行列と線型方程式系
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/13 01:23 UTC 版)
n 変数 m 本の線型方程式系は一般に mn 個の係数 ai,j (i = 1, 2, ..., m, j = 1, 2, ..., n) および m 個の定数 b1, b2, ..., bm を用いて { a 1 , 1 x 1 + a 1 , 2 x 2 + ⋯ + a 1 , n x n = b 1 a 2 , 1 x 1 + a 2 , 2 x 2 + ⋯ + a 2 , n x n = b 2 ⋮ ⋮ ⋮ a m , 1 x 1 + a m , 2 x 2 + ⋯ + a m , n x n = b m {\displaystyle \left\{{\begin{matrix}a_{1,1}x_{1}+a_{1,2}x_{2}+\cdots +a_{1,n}x_{n}&=&b_{1}\\a_{2,1}x_{1}+a_{2,2}x_{2}+\cdots +a_{2,n}x_{n}&=&b_{2}\\\vdots &\vdots &\vdots \\a_{m,1}x_{1}+a_{m,2}x_{2}+\cdots +a_{m,n}x_{n}&=&b_{m}\end{matrix}}\right.} の形に表される。これを、記法を改めて [ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a m , 1 a m , 2 ⋯ a m , n ] [ x 1 x 2 ⋮ x n ] = [ b 1 b 2 ⋮ b m ] {\displaystyle {\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,n}\\a_{2,1}&a_{2,2}&\cdots &a_{2,n}\\\vdots &\vdots &\ddots &\vdots \\a_{m,1}&a_{m,2}&\cdots &a_{m,n}\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{bmatrix}}={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{m}\end{bmatrix}}} と表示したり、あるいはさらに行列やベクトルを用いて、A = [ai j], x = [xj], b = [bi] などと置いてやれば A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } と記述することができる(歴史的には、このような表記法を考えることで行列の概念が作り出されたのである)。ここで A をこの方程式系の係数行列、x を変数ベクトルという。また特に b が零ベクトル 0(すべての成分が 0)である場合に、この線型方程式は斉次(あるいは同次、homogeneous)であるといい、そうでないとき非斉次(あるいは非同次、inhomogeneous)であるという。非斉次の方程式 A x = b が与えられたとき、b = 0 と置いて得られる斉次方程式 A x = 0 はもとの非斉次方程式に随伴する斉次方程式であるという(随伴という代わりに、同伴する、付随する、対応する、伴うなどともいう)。
※この「行列と線型方程式系」の解説は、「線型方程式系」の解説の一部です。
「行列と線型方程式系」を含む「線型方程式系」の記事については、「線型方程式系」の概要を参照ください。
- 行列と線型方程式系のページへのリンク