等価楕円の概念
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/07/03 06:19 UTC 版)
理想的な円孔や楕円孔と異なる複雑な形状の孔や切欠きの応力集中係数を簡易に近似計算するために、等価楕円(equivalent ellipse)の考え方が平野により考案された。等価楕円の考え方では、板中の孔に対しては孔の曲率半径ρと孔の全長2aと等しい楕円を、板縁切欠きに対しては切欠き底半径ρと切欠き深さaと等しい楕円を当てはめて応力集中係数を推定する。すなわち、これら2つのパラメータが応力集中に対しては影響が大きく、他の形状要素(例えば切欠きの開き角など)の影響は相対的に小さいと考える方法である。 等価楕円による推定は万能ではなく、例えば、大きな孔縁にある非常に小さな切欠きの応力集中では、等価楕円による推定値は正確な応力集中係数値から大きく外れる。ただし、上手く使用すれば実用上十分な近似値を推定できる。例えば遠方で引張を受ける無限板縁のV形切欠きの場合では、開き角がθ = 90°、切欠き深さと切欠き底半径の比がa/ρ = 4のときで、正確な数値計算結果ではKt = 5.274、等価楕円による計算ではKt = 5である。
※この「等価楕円の概念」の解説は、「応力集中」の解説の一部です。
「等価楕円の概念」を含む「応力集中」の記事については、「応力集中」の概要を参照ください。
- 等価楕円の概念のページへのリンク