第1段へのSRB-Aの採用
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/28 16:17 UTC 版)
「イプシロンロケット」の記事における「第1段へのSRB-Aの採用」の解説
多段式ロケットは下段を切り離すたびにペイロードの占める重量比が大きくなっていくため、上段になるほど無駄なくペイロードを加速できるようになる。逆に下段ロケットは上段ロケットを大気圏外まで持ち上げることが主な役割であり、ロケット全体に占めるペイロードの重量比が少ない分だけ、下段はペイロード加速の効率はよくない。すなわち上段の性能を高めると全体性能が大きく向上するが、下段の性能を高めても全体性能の変化は小さいことになる。逆を言えば下段で性能を上げる場合は効率が低い分だけ大規模にせねばならず、費用に与える影響も大きい。 そこでイプシロンロケットでは性能を落としてでも大胆に費用を削減する手法が採られ、第1段にH-IIAロケットの固体ロケットブースターのSRB-A3を最低限の改造(ロール制御用のSMSJなど)で流用し、M-Vロケットの1段と2段を統合している。そのままイプシロンの第1段に流用するには、M-VロケットのM-14では第2段が無くなるため加速がきつくなる。SRB-AはH-IIAロケットの補助ロケットして最適化しているため無駄が多い。M-14より推力が小さいSRB-AでもM-34とKM-V2を持ち上げるために最適化されたM-25に比べて推力が大きいため、試験機ではSRB-Aの能力を最大限使える高圧型モータではなく、打ち上げ能力は低下するが積荷の衛星に優しい長秒時型モータが使用される。
※この「第1段へのSRB-Aの採用」の解説は、「イプシロンロケット」の解説の一部です。
「第1段へのSRB-Aの採用」を含む「イプシロンロケット」の記事については、「イプシロンロケット」の概要を参照ください。
- 第1段へのSRB-Aの採用のページへのリンク