代数多様体の特異点
代数幾何学という数学の分野において、代数多様体 V の特異点 (singular point of an algebraic variety) は、この点において多様体の接空間をきちんと決められないという幾何学的な意味で'特別な'(つまり特異な)点 P である。実数体上定義された多様体の場合には、この概念は非局所平坦性の概念を一般化する。代数多様体の特異でない点を正則 (regular) という。特異点を全く持たない代数多様体を非特異 (non singular) あるいは滑らか (smooth) という。
例えば、方程式
- y2 − x2(x + 1) = 0
の定める平面代数曲線(三次曲線)は、原点 (0,0) で自己交叉し、したがって原点は曲線の二重点である。それは特異である、なぜならばただ1つの接線がそこで正しく定義されないからである。
- F(x,y) = 0,
で定義される平面曲線がある点で特異であるとは、F のテイラー級数のその点での位数が少なくとも 2 であるということである。
その理由は、微分学において、そのような曲線の点 (x0, y0) における接線は、左辺がテイラー展開の一次の項であるような方程式
特異多様体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/11 00:57 UTC 版)
射影多様体 X {\displaystyle X} を定めている環(underlying algebra) R {\displaystyle R} の Spec {\displaystyle {\text{Spec}}} を考える。これは、 X {\displaystyle X} のアフィン錐と呼ばれているもので、原点が常に特異点になる。例えば、 x 0 5 + x 1 5 + x 2 5 + x 3 5 + x 4 5 {\displaystyle x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}} で定義される 3 {\displaystyle 3} 次元代数多様体のアフィン錐を考える。ヤコビ行列は [ 5 x 0 4 5 x 1 4 5 x 2 4 5 x 3 4 5 x 4 4 ] {\displaystyle {\begin{bmatrix}5x_{0}^{4}&5x_{1}^{4}&5x_{2}^{4}&5x_{3}^{4}&5x_{4}^{4}\end{bmatrix}}} となり、これは原点で消えるので、この錐は特異である。このようなアフィン超曲面は、比較的単純な環だが豊富な構造を持つため特異点論でよく現れる。 もう1つの特異多様体の例は、滑らかな多様体の射影錐である。 X ⊂ P n {\displaystyle X\subset \mathbb {P} ^{n}} を滑らかな射影多様体とすると、その射影錐とは P n + 1 {\displaystyle \mathbb {P} ^{n+1}} の X {\displaystyle X} と交わる全ての直線の和集合として定義される。例えば、 Proj ( C [ x , y ] ( x 4 + y 4 ) ) {\displaystyle {\text{Proj}}\left({\frac {\mathbb {C} [x,y]}{(x^{4}+y^{4})}}\right)} の射影錐は、スキーム Proj ( C [ x , y , z ] ( x 4 + y 4 ) ) {\displaystyle {\text{Proj}}\left({\frac {\mathbb {C} [x,y,z]}{(x^{4}+y^{4})}}\right)} である。 z ≠ 0 {\displaystyle z\neq 0} のチャートでは、これは Spec ( C [ X , Y ] ( X 4 + Y 4 ) ) {\displaystyle {\text{Spec}}\left({\frac {\mathbb {C} [X,Y]}{(X^{4}+Y^{4})}}\right)} というスキームになっており、これをアフィン直線 A Y 1 {\displaystyle \mathbb {A} _{Y}^{1}} に射影すると、原点で退化する4点の族になっている。このスキームが非特異であることは、ヤコビ行列を使う判定法を使っても確かめられる。
※この「特異多様体」の解説は、「滑らかな射」の解説の一部です。
「特異多様体」を含む「滑らかな射」の記事については、「滑らかな射」の概要を参照ください。
- 特異多様体のページへのリンク