時間領域と空間領域
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/17 01:58 UTC 版)
時間領域と空間領域で共通する処理手法はフィルタリングによる入力信号の強化である。フィルタリングは一般に、ある(入力または出力)サンプルについて、その周囲のサンプルを変換することで構成される。フィルタは様々な性質で分類されるが、以下にその例を挙げる。 「線形」フィルタは入力サンプル列に線形変換を施す。それ以外のフィルタは「非線形」である。線形フィルタは重ね合わせの条件を満足する。つまり、入力に複数の信号の要素が含まれているとき、線形フィルタを通した出力も同じ複数の信号を同じ線形比率で含んでいる。 「因果性」フィルタは時系列上過去のサンプルだけを使って処理を行う。「非因果性」フィルタは時系列上未来のサンプルも使った処理をする。非因果性フィルタは遅延を追加することで因果性フィルタに変換できる。 「時不変」フィルタは時間で変化しない一定の性質を持つ。その他の適応フィルタなどは時間で変化する。 「安定」フィルタと「不安定」フィルタがある。安定フィルタは時間と共にある値に収斂する出力を生成するか、ある範囲の値を生成する。不安定フィルタは発散する出力を生成する。 「有限インパルス応答」(FIR)フィルタは入力信号のみを使うのに対して、「無限インパルス応答」(IIR)フィルタは入力信号と共に、それ以前の出力信号も使う。FIRフィルタは常に安定であるが、IIRフィルタは不安定な場合がある。 多くのフィルタはZ領域(周波数領域の上位概念)の伝達関数で記述できる。フィルタは漸化式でも記述できる場合がある。 FIRフィルタの出力は、入力信号とインパルス反応の畳み込みで計算できる場合がある。フィルタをブロック図で表現すれば、ハードウェアを使ってそのアルゴリズムを実装するのに使用できる。
※この「時間領域と空間領域」の解説は、「信号処理」の解説の一部です。
「時間領域と空間領域」を含む「信号処理」の記事については、「信号処理」の概要を参照ください。
- 時間領域と空間領域のページへのリンク