完全加法族と可測空間
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/08 16:52 UTC 版)
ある集合 X 上の有限加法族 F は、それが可算和・可算交に関して閉じているとき、完全加法族と呼ばれる。このとき、集合体 (X, F) は可測空間と呼ばれ、可測空間の複体は可測集合と呼ばれる。 測度空間とは、三つ組 (X, F, μ) であって、μ が可測空間 (X, F) 上の測度であることをいう。μ が確率測度であるときには、測度空間を確率空間、その底にある可測空間を標本空間と呼ぶ。標本空間の点は標本と呼ばれ、可能性のある結果を表していると同時に、可測集合(複体)は事象と呼ばれ、確率を割り当てることによって結果の性質を表現していると考えられる(標本空間と言う用語は単に可測空間の底集合の意味で用いられることも多い。任意の部分集合が事象である場合にはなおさらである)。 測度空間や確率空間はそれぞれ測度論や確率論において基本的な役割を果たす。
※この「完全加法族と可測空間」の解説は、「有限加法族」の解説の一部です。
「完全加法族と可測空間」を含む「有限加法族」の記事については、「有限加法族」の概要を参照ください。
- 完全加法族と可測空間のページへのリンク