回転数 (数学)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/07 15:48 UTC 版)
ナビゲーションに移動 検索に移動数学において、与えられた点の周りの平面の閉曲線の回転数 (winding number) は曲線がその点の周りを反時計回りに周った総回数を表す整数である。回転数は曲線の向きに依存し、曲線が点の周りを時計回りに周れば負の数である。
回転数は代数トポロジーにおいて研究の基本的な対象であり、ベクトル解析、複素解析、幾何学的トポロジー、微分幾何学、弦理論を含む物理、において重要な役割を果たす。なお理論物理学においてはこの量は巻付き数と呼ばれる[1]。
直感的記述
xy 平面において向き付けられた閉曲線を与えられたとしよう。曲線を何らかの対象の動きの道として、向き付けは対象が動く向きを示すとして、想像することができる。すると曲線の回転数 (winding number) は対象が原点の周りに作った反時計回りの turn の総数に等しい。
turn の総数を数える時に、反時計回りの動きは正に数え、一方時計回りの動きは負に数える。例えば、対象がまず原点を4回反時計回りに回転し、それから原点を時計回りに1回回転すれば、曲線の総回転数は 3 である。
この案を使って、原点の周りを全く周らない曲線の回転数は 0 であり、原点の周りを時計回りに周る曲線の回転数は負である。したがって、曲線の回転数は任意の整数でありうる。以下の絵は回転数が −2 と 3 の間の曲線を示している:
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
−2 | −1 | 0 | ||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() The boundary of the regular Enneagram {9/4} winds around its centre 4 times, so it has a density of 4.
多角形において、回転数は polygon density と呼ばれる。凸多角形と、より一般に(自己交叉しない)simple polygon に対して、ジョルダンの曲線定理によって density は 1 である。対照的に、regular star polygon {p/q} に対して、density は q である。 Turning number道の回転数を道自身の接線に関して考えることもできる。時間でフォローされた道として、これは速度ベクトルの原点についての回転数になる。この場合右に描かれた例は回転数 4(あるいは −4)をもつ、なぜならば小さいループが数えられるからだ。 これははめ込まれた道に対して(すなわち微分がどこでも消えない微分可能な道に対して)のみ定義され、tangential Gauss map の degree である。 これは turning number と呼ばれ、全曲率を 2π で割ったものとして計算することができる。 回転数とハイゼンベルク強磁性方程式最後に、回転数は (2 + 1)-次元連続ハイゼンベルク強磁性方程式 とその integrable extension、石森方程式などと関係が深いことを注意しよう。最後の方程式の解は回転数または topological charge (topological invariant and/or topological quantum number) によって分類される。 脚注
関連項目
外部リンク
「回転数 (数学)」の例文・使い方・用例・文例
辞書ショートカット カテゴリ一覧 すべての辞書の索引 「回転数_(数学)」の関連用語
検索ランキング
回転数_(数学)のページの著作権
ビジネス|業界用語|コンピュータ|電車|自動車・バイク|船|工学|建築・不動産|学問
©2025 GRAS Group, Inc.RSS |