回帰に関する誤解
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/18 03:52 UTC 版)
回帰の誤謬とは、平均回帰に気づかずにデータの収集と解釈を行い、さも科学的根拠があるような誤った結論(改善効果があった、悪化が見られる、等)を出してしまうことをいう。 有名な例には統計学者ホレース・セクリストの著書「The Triumph of Mediocrity in Business」(ビジネスにおける平凡さの勝利、1933年)がある。ここでは「競合するビジネスの利益率には時間平均に近づく傾向がある」という「経営学の法則」を示すために、膨大なデータを集めたが、実際のところ平均回帰の一例(あるいは盛者必衰の理?)を示したにすぎない。 よくありがちな誤謬には次のようなものがある。ある薬が成績を増すかどうかをテストしたい。まず生徒にテストをさせ、点数が最下位10%だった生徒たちに薬を与え、再度別のテストをさせる。すると平均成績が顕著に上がったという結果が得られる。しかしこれは薬の効果について何もいったことにならない。この例では薬なしの比較対照実験も可能だが、どちらの場合も同じことが起きるということがわかるだろう。
※この「回帰に関する誤解」の解説は、「平均への回帰」の解説の一部です。
「回帰に関する誤解」を含む「平均への回帰」の記事については、「平均への回帰」の概要を参照ください。
- 回帰に関する誤解のページへのリンク