分配函数 (数学)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:55 UTC 版)
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
確率論や情報科学や力学系で使用されている分配函数 (ぶんぱいかんすう、英: partition function) は、統計力学で定義されている分配函数の一般化である。確率論では、正規化された値の分配函数が、ボルツマン分布である。分配函数は、多くの概念と互いに固く結び付いて、様々な種類の量を計算することが可能な一般的なフレームワークを提供する。特に、分配函数はどのように期待値やグリーン函数を計算するのかを示していて、フレドホルム理論への橋渡しともなっている。
複素射影空間や射影ヒルベルト空間上の確率変数の設定が、フビニ・スタディ計量を持つよう幾何学化されると、量子力学の理論や、より一般的には場の量子論を結果としてもたらす。これらの理論での分配函数は、経路積分定式化により非常に優れた開発がなされ、大きく成功している。そこでは、本記事でレビューする多くの公式とほぼ同じ公式を導くことができる。しかしながら、基礎となっている測度空間は、確率論では実数に値をとり単純であったことに対し、(量子力学や場の理論の中では)複素数に値をとり、多くの公式の中に余剰なファクタである i が現れる。このファクタを追跡することは困難であるので、ここでは行わない。本記事では、はじめに確率の総和が 1 である古典的な確率論へ焦点を当てる。
別な話題として、分配函数は、情報理論への自然な情報幾何学的アプローチを可能とする。そこの分野では、フィッシャー情報計量(Fisher information metric) を分配函数から導出された相関函数であると理解できる。情報幾何学では、リーマン多様体を定義するということが起きる。
確率論では、多くの問題の中に分配函数が発生する。自然な対称性を持つ状況下では、状況に付帯する確率測度であるギッブス測度(Gibbs measure) はマルコフ性を持つ。このことは、分配函数が遷移的な対称性を持つ場合にのみ発生することを意味している。しかし、そのような変化する状況下では、神経ネットワーク(ホップフィールド・ネットワーク (Hopfield network))やゲノミクス、コーパス言語学や人工知能などの分野への応用があり、マルコフネットワーク(Markov network) やマルコフ論理ネットワーク(Markov logic network) という考え方がある。ギッブス測度は、固定されたエネルギー期待値のエントロピーを最大とする性質を持つ唯一の測度でもある。最大エントロピー原理や、これから得られたアルゴリズムの中に分配函数が現れることが、これらの背景となっている。
定義
値
「分配函数 (数学)」の例文・使い方・用例・文例
- 分配函数_(数学)のページへのリンク