オイラーの分割恒等式とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 高等数学 > 恒等式 > オイラーの分割恒等式の意味・解説 

オイラーの分割恒等式

(分割恒等式 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/30 07:04 UTC 版)

数論組合せ論におけるオイラーの分割恒等式(オイラーのぶんかつこうとうしき)は、自然数整数)を「互いに異なる自然数に分割する方法の個数」(distinct partition; 異分割) と「奇数の自然数に分割する方法の個数」(odd partotion; 奇分割) が等しいことを示す恒等式である。[1]

分割の例

例えば、自然数 8 を互いに異なる自然数に分割する方法

8 = 1+2+5
8 = 1+3+4
8 = 1+7
8 = 2+6
8 = 3+5
8 = 8

と奇数の自然数に分割する方法

8 = 1+1+1+1+1+1+1+1
8 = 1+1+1+1+1+3
8 = 1+1+1+5
8 = 1+1+3+3
8 = 1+7
8 = 3+5

の個数は等しく 6 である。

自然数 n をこのように分割する方法の個数を Q(n) で表すと、

Q(1) = 1, Q(2) = 1, Q(3) = 2, Q(4) = 2, Q(5) = 3, Q(6) = 4, Q(7) = 5, Q(8) = 6, Q(9) = 8, Q(10) = 10, … (オンライン整数列大辞典の数列 A9

などと続く。

母関数による表現

オイラーは2種類の分割の方法の個数が等しいことを、母関数を用いて示した。自然数 n を互いに異なる自然数に分割する方法の数を Pd(n) とすると

である。また、自然数 n を奇数の自然数に分割する方法の数を Po(n) とすると

である。従って、オイラーの分割恒等式は

と書き表される。

証明

母関数で書き表したものの左辺を変形すると右辺が得られる。

初等的な説明

例として 8 を分割することを考える。ここで P を「異なる数による分割」に現れる一つの偶数をその半分の二つの整数の和にする変換U を「奇数のみの分割」に現れる同じ二つの整数を一つの偶数にする変換とすると

このように「異なる数による分割」の方法と「奇数のみの分割」の方法との間に1対1対応がつけられる。これはPとUが互いに逆の変換であることから導かれる。したがってそれらの方法の個数は互いに等しい。ただし上記の 1+7 や 3+5 のような「異なる数による分割」と「奇数のみの分割」の両方に属するような方法は自分自身に対応づけることとする。その場合は恒等写像 I で表した。

参考文献

関連項目

外部リンク





オイラーの分割恒等式と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「オイラーの分割恒等式」の関連用語

オイラーの分割恒等式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



オイラーの分割恒等式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのオイラーの分割恒等式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS