他の数体系での振る舞い
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/15 07:43 UTC 版)
「0.999...」の記事における「他の数体系での振る舞い」の解説
実数は標準的な数体系であるが、"0.999…" という無数桁の表記がある実数を表すだろうと、我々[誰?]は自然に考えている。ウィリアム・ティモシー・ガワーズは Mathematics: A Very Short Introduction で、等式 0.999… = 1 を結論することも同様に『慣習』であると述べている。すなわち、 「しかしながら、それは決して恣意的な慣習ではない。なぜなら、それを受け入れなければ、一風変わった新しい対象を発明するか、または算術のよく知られた規則のいくつかを諦めるかのどちらかが強制されるからである。」 標準的な数体系である実数体に対して、通常と異なる方法で数を構成し、0.999… という表記が意味を持つ、実数とは別の数体系を定義することができる。そのような数体系においては本項冒頭辺りの節で示した証明などはその体系における記述として解釈し直さなければならず、またそういった体系において(上記の証明が正しいとする根拠を失ったり、誤りであると示されたりして)0.999… と 1 とが同一の対象を表すものでない可能性が見出されることもある。そうは言っても、多くの数体系は(実数の体系を代替するような独立した対象としてではなく)実数の体系の拡張となるものであって、故にそこでは 0.999… = 1 も引き続き成立することとなる。しかしそういった体系においてさえも、("0.999…" と表示される数が意味を持つ場合には)0.999… がどのように振る舞うかということだけではなく関連する現象の振る舞いに対して考えるために、代替の数体系を考察するということは意味のあることであるといえる。つまり、ある現象が実数体系における場合とは異なる振る舞いをするのであれば、その体系に組み込まれた前提条件は、実数体系のそれの少なくとも一つを壊したものになっていなければならない(以下に挙げるような体系が、実数におけるどのような現象や条件を否定するのかという観点に立って説明することができる)[独自研究?]。
※この「他の数体系での振る舞い」の解説は、「0.999...」の解説の一部です。
「他の数体系での振る舞い」を含む「0.999...」の記事については、「0.999...」の概要を参照ください。
- 他の数体系での振る舞いのページへのリンク