世界線、光速との比較とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 世界線、光速との比較の意味・解説 

世界線、光速との比較

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/13 06:49 UTC 版)

特殊相対性理論」の記事における「世界線、光速との比較」の解説

運動している質点ミンコフスキー空間内に描く軌跡世界線と言う。今、世界線原点を通る直線となる質点運動があるとし、その直線の(4元)方向ベクトルu→ とする(長さ問わない)。 この質点運動慣性座標系 e→0、e→1、e→2、e→3 にいる観測者 A が原点眺めるとする。この慣性座標系における u→成分表示を (ct, x, y, z) とすると、3次元ベクトル (x/t, y/t, z/t) は A から見た質点速度ベクトルであると解釈できる次に u→速度光速比較してみる。u→速度が光を下回る必要十分条件は、√x2 + y2 + z2 / t < c となることであるので、これを書き換えると、(ct)2 − x2 − y2 − z2 > 0 となる。ミンコフスキー計量の定義より、この式は η(u→, u→) > 0 と慣性座標系によらない形で表現できる。従って、η(u→, u→) > 0 であれば、どの慣性系から見て光速度下回り逆に η(u→,u→) < 0 であれば どの慣性系から見て光速度上回る前述のように η(u→, u→) の正負によって、u→時間的もしくは空間的と呼ぶので、まとめると以下が結論けられる方向ベクトル u→時間的質点はどの慣性系から見て光速下回る 方向ベクトル u→空間的質点はどの慣性系から見て光速上回る 方向ベクトル u→ が光的 ⇔ 質点はどの慣性系から見て光速等し最後のものは光速度不変の原理からの直接帰結でもある。 なお、上の議論では、質点世界線直線である事を仮定したが、そうでない場合原点での接線u→ として同様の議論をする事で同じ結論得られる

※この「世界線、光速との比較」の解説は、「特殊相対性理論」の解説の一部です。
「世界線、光速との比較」を含む「特殊相対性理論」の記事については、「特殊相対性理論」の概要を参照ください。

ウィキペディア小見出し辞書の「世界線、光速との比較」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「世界線、光速との比較」の関連用語

世界線、光速との比較のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



世界線、光速との比較のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの特殊相対性理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS