ヴァイエルシュトラスの楕円函数
上記の不変量を用いて
と定めると、 Δ および g23はともに次数 −12 の斉次函数であるから j は次数 0 の斉次関数である。つまり τ = ω2/ω1 ならばつねに
が成り立つ。したがってこれは周期比 \tau=ω2/ω1 によってのみ定まるので1変数関数
が定義される。これをフェリックス・クラインの j-不変量、j-函数、あるいは単に j-不変量 (j-invariant) という[6]。
Im(τ)>0 において g2 および g3 は正則で Δ(τ) ≠ 0 が成り立つから、 j-不変量も Im(τ)>0 において正則である。また不変量は周期格子にのみ依存することからモジュラー変換により不変である。つまり a,b,c,d が ad − bc = 1 を満たす整数(つまり がモジュラー群 SL(2, Z) に属する)のとき Im(τ)>0 において
が成り立つ[7]。そして j-不変量についてはフーリエ級数は、ノーム q = exp(iπτ) の平方を用いて、
となる(係数は(オンライン整数列大辞典の数列 A000521)により与えられる)[8]。
定数 e1, e2, e3
三次の多項式方程式 4t3 − g2t − g3 = 0 とその三根 e1, e2, e3 を考える。判別式 Δ = g23 − 27g32 が零でなければ、これらの根はどの二つも相異なる。この多項式には二次の項がないから、根は
を満たす。一次の項と定数項の係数(それぞれ g2 と g3) は根と係数の関係により
および
を満たす[9]。
不変量が実数の場合には、Δ の符号は根の特性を決定する。Δ > 0 ならば、三根は全て実数で、慣習的に e1 > e2 > e3 であるものとする。Δ < 0 ならば、慣習的に α > 0, β > 0 を用いて e1 = −α + βi, e3 は e1 の複素共軛、e は非負実数となるようにする。
ヴァイエルシュトラスのペー函数の半周期 ω1/2, ω2/2 は、これらの根との間に
なる関係を持つ。ペー函数の導函数の平方は、上で述べた函数値の三次多項式に等しいから、
が i = 1, 2, 3 に対して成り立つ。逆に、函数値がこの多項式の根に等しいならば、導函数は零になる。
g2, g3 がともに実数で Δ > 0 ならば、ei は全て実数であり、ペー函数 ℘ は 0, ω3, ω1 + ω3, and ω1 を四頂点とする矩形の周上で実数値をとる。上で述べたように根を e1 > e2 > e3 と順序付けるならば、第一半周期は実数
になり、一方第三半周期は純虚数
になる。
いくつかの定理について
ペー函数の満たすいくつかの性質を以下に示す。
これの対称版は u + v + w = 0 として
と書ける。
また、加法公式
および、2z が周期でない限りにおいて倍数公式
が成り立つ。
基本半周期 1 の場合
ω1 = 1 のときには、ω2 を慣習的に τ と書き、また、上で述べた理論の多くはより簡単な形になる。上半平面の元 τ を一つ固定すると、τ の虚部は正であり、ヴァイエルシュトラスの ℘-函数は
で定義される。和は原点を除く格子 {m + nτ : m, n ∈ Z} の全ての点に亙って取る。ここでは、τ を固定して、 ℘ を z の函数と見ているが、z を固定して τ を動かせば、楕円モジュラー函数の面積が導かれる。
一般論
ペー函数 ℘ は複素平面上の有理型函数で、各格子点において二位の極を有する。また、1 と τ を周期に持つ二重周期函数、すなわち ℘ は
を満たす。上記の和は次数 −2 の斉次函数で、c を零でない複素数として
が成立し、これを用いて、任意の周期対に対する ℘-函数を定義することができる。z に関する導函数も計算できて、℘ に関して代数的な関係式
が得られる。ここで g2, g3 は τ のみに依存して決まり、また τ のモジュラー形式になる。代数方程式
は楕円曲線を定め、(℘, ℘') がこの曲線の径数付けになっていることが確かめられる。
与えられた周期を持つ二重周期有理型函数の全域性は、楕円曲線に付随する代数函数体を定めるが、この体が
であることが示せるので、そのような函数はペー函数とその導函数に関する有理函数になる。
単独の周期平行四辺形をトーラス(つまりドーナツ型をしたリーマン面)に巻きつけることができるから、与えられた周期対に付随する楕円函数を、このリーマン面上の函数と見做すこともできる。
三次多項式 4X3 − g2X − g3 の根 e2, e3 は τ に依存して決まり、テータ函数を用いて
と表すことができる。
だからこれらもテータ函数を用いて書ける。ペー函数もテータ函数を用いて
と書ける。
ペー函数 ℘ は(周期を除いて)二つの零点を持ち、その導函数 ℘' は三つの零点を持つ。導函数 ℘' の零点の方は簡単に求められる、というのも ℘' は奇函数ゆえ零点は半周期点になければならないからである。他方、ペー函数 ℘ 自体の零点は,、母数 τ が特別な値である場合(例えば、周期格子がガウス整数全体の成す集合になるとき)を除けば、閉じた式に表すのは非常に困難である。一つの式が、ザギエとアイヒラーによって求められている[10]。
ヴァイエルシュトラス理論には、ヴァイエルシュトラス・ゼータ函数というものもあり、これはペー函数 ℘ の不定積分で、二重周期函数にはならない。また、ヴァイエルシュトラス・ゼータを対数導函数とするような、ヴァイエルシュトラス・シグマ函数と呼ばれるテータ函数も持つ。このシグマ函数は任意の周期点に零点を持ち(かつそれ以外に零点を持たない)、ヤコビの楕円函数を用いて表すこともできる。これによって、ヴァイエルシュトラスの楕円函数とヤコビの楕円函数の間の相互変換の一つの方法が与えられる。
ヴァイエルシュトラス・シグマは整函数であり、J.E.リトルウッドのランダム整函数論において「典型的」な函数としての役割を持つ。
ヤコビの楕円函数との関係
数値解析的な場面において、ヴァイエルシュトラスの楕円函数の計算にはヤコビの楕円函数を用いると便利なことも多い。基本関係式は
で与えられる[11]。ただし、ei (i = 1, 2, 3) は上で述べた三つの根、ヤコビの楕円函数の母数 k は
を満たし、各ヤコビの楕円函数の引数 w は
である。
注釈
- ^ a b Apostol, Theorem 1.15, p.15
- ^ Apostol, Theorem 1.18, p.20
- ^ Apostol, Theorem 3.3, p.51
- ^ Apostol, Theorem 3.2, p.50
- ^ Apostol, Theorem 1.19, p.20
- ^ Apostol, Chapter 1.12, p. 15 では係数1728を乗ぜずに定義している。
- ^ Apostol, Theorem 1.16, p.17
- ^ Apostol, Theorem 1.20, p.21
- ^ Abramowitz and Stegun, p. 629
- ^ Eichler, M.; Zagier, D. (1982). “On the zeros of the Weierstrass ℘-Function”. Mathematische Annalen 258 (4): 399–407. doi:10.1007/BF01453974.
- ^ Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. pp. p. 721. LCCN 59-14456
参考文献
- Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 18",Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, pp. 627, ISBN 978-0486612720, MR 0167642
- N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island ISBN 0-8218-4532-2
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second Edition (1990), Springer, New York ISBN 0-387-97127-0 (See chapter 1.)
- K. Chandrasekharan, Elliptic functions (1980), Springer-Verlag ISBN 0-387-15295-4
- Konrad Knopp, Funktionentheorie II (1947), Dover; Republished in English translation as Theory of Functions (1996), Dover ISBN 0-486-69219-1
- Serge Lang, Elliptic Functions (1973), Addison-Wesley, ISBN 0-201-04162-6
- Reinhardt, William P.; Walker, Peter L. (2010), “Weierstrass Elliptic and Modular Functions”, in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, 1952, chapters 20 and 21
- 竹内端三『楕圓函數論』岩波書店〈岩波全書〉、1936年。
外部リンク
- Hazewinkel, Michiel, ed. (2001), "Weierstrass elliptic functions", Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4。
- Weierstrass's elliptic functions on Mathworld.
- Elliptic functions, Hans Lundmark's Complex analysis page.
- 古典について - 『楕圓函數論』を TeX にて打ち直したものの公開(個人サイト)
- 『楕円函数論』竹内端三著の現代語訳