ヤコビの楕円関数
数学において、ヤコビの楕円関数(ヤコビのだえんかんすう、英: Jacobi elliptic functions)とは、基本的な楕円関数の一群であり、追加でテータ関数を含むこともあり、歴史的に重要な関数からなる。これらの関数は重要な構造を持っていて、さらに直接関連した応用も存在する。三角関数との類似性も便利で、sin に対応する関数を sn と表記する[2]。実用的な問題にはヴァイエルシュトラスの楕円函数よりもヤコビの楕円関数のほうがよく用いられる。これは複素解析の概念を使わずに定義し考察できるからである。これらの関数はCarl Gustav Jakob Jacobi (1829)により導入された。
導入

ヤコビの楕円関数は全部で12種類ある。これら12種は長方形のある頂点から他の頂点へ引いた矢印に対応している。ここでは、この頂点を順に s、c、d、n と呼ぶことにする。この長方形を複素平面に配置して、s は原点に、c は実軸上の K の位置に、d は K + iK' の位置に、n は虚軸上の iK' の位置になるようにする。実数 K と K' は四半周期と呼ばれる。このとき、 s、c、d、n から異なる2文字を選んで「p」と「q」とすると、ヤコビの楕円関数は「pq」と書くことができる。
ヤコビの楕円関数は二重周期を持つ有理型関数で、次の性質を満たす唯一のものをいう。
- 頂点 p に一位の零点を持ち、頂点 q には一位の極を持つ
- p から q までが関数 pq u の半周期となる。つまり、関数 pq u は pq の向きの周期を持っており、その周期は p と q の距離の倍である。さらに、関数 pq u はほかの2方向についても周期的であり、p から残りの頂点への距離が 1/4 周期である。
- 関数 pq u を各頂点で u について展開すると、先頭の項の係数は 1 となる。言い換えると、関数 pq u を、頂点 p において展開した場合の先頭の項は u であり、頂点 q では 1/u であり、残りの頂点では 1 である。
より一般的には、長方形である必要はなく、平行四辺形でもよい。しかし、K と iK' をそれぞれ実軸と虚軸に置いておくと、ヤコビの楕円関数 pq u は、u が実数のとき実数値を取る。
記法
楕円関数には様々な記法があり、無用な混乱を引き起こしている。楕円関数は2変数の関数である。最初の変数は振幅φを使って表すこともあるが、一般には、以下のように u を使う。二番目の変数はパラメタ m を使ったり、母数 k を使って表す。ここで、k2 = m である。他にも、modular angle α を使うこともある。m = sin2 α である。これら別記法の定義や発展した話題、相補的な対応概念については、楕円積分や四半周期の記事を見られたい。
楕円積分の逆関数による定義

上記のように、特定の性質を持つ唯一の有理型関数として定義するのは非常に抽象的である。より単純で、完全に同値な定義として、第1種不完全楕円積分の逆関数として定義することができる。まず、
uとkを独立に動かしたときの振幅の模型(垂直軸が振幅) ここで、角
r = 1 の単位円上で