ネイピア数の表現
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/29 15:05 UTC 版)
|
ネイピア数 e には様々な表式がある。本稿では代表的なネイピア数の定義とそれに基づく表式について述べる。以下では特に断りがない限り、e をネイピア数とする。
e は数学定数の一つであり、しばしば自然対数の底と呼ばれる実数である。e は無理数であるため(ネイピア数の無理性の証明参照)通常の分数では表せないが、無限連分数で表すことはできる。また、解析学的手法を用いて級数や無限乗積、ある種の数列の極限としてe を表すことができる。
定義
以下にネイピア数 e のいくつかの定義を示す。本項において e の定義と e の表式に明確な差はないが、歴史的に e の利用目的・存在理由としての意義付けが明確なものを定義として扱っている。
I. ヤコブ・ベルヌーイによるとされる e の定義:
Weblioに収録されているすべての辞書からネイピア数の表現を検索する場合は、下記のリンクをクリックしてください。

- ネイピア数の表現のページへのリンク