行列値関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 行列値関数の意味・解説 

行列値関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/19 15:06 UTC 版)

行列値関数(ぎょうれつちかんすう、: matrix-valued functions)とは行列を変数に持つ特殊関数の総称である[1][2]




ODEの数値計算

  1. ^ a b c d e f Higham, N. J. (2008). Functions of matrices: theory and computation. SIAM.
  2. ^ a b c d 千葉克裕; 行列の関数とジョルダン標準形, 2010. サイエンティスト社
  3. ^ Jodar, L., & Cortés, J. C. (1998). Some properties of Gamma and Beta matrix functions. Applied Mathematics Letters, 11(1), 89-93.
  4. ^ Kontsevich, M. (1992). Intersection theory on the moduli space of curves and the matrix Airy function. en:Communications in Mathematical Physics, 147(1), 1-23.
  5. ^ Herz, C. S. (1955). Bessel functions of matrix argument. Annals of Mathematics(2), 61, 474-523.
  6. ^ Sinap, A., & Van Assche, W. (1996). Orthogonal matrix polynomials and applications. en:Journal of Computational and Applied Mathematics, 66(1-2), 27-52.
  7. ^ Koev, P., & Edelman, A. (2008). Hypergeometric function of a matrix argument. Department of Mathematics, Massachusetts Institute of Technology (April 11 2008). URL https://math.mit.edu/~plamen/software/mhgref.html.
  8. ^ Gross, K. I., & Richards, D. S. P. (1987). Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Transactions of the American Mathematical Society, 301(2), 781-811.
  9. ^ Abdalla, M. (2018). Special matrix functions: Characteristics, achievements and future directions. Linear and Multilinear Algebra, 1-28.
  10. ^ Trench, W. F. (1999). Invertibly convergent infinite products of matrices. en:Journal of computational and applied mathematics, 101(1-2), 255-263.
  11. ^ Trench, W. F. (1995). Invertibly convergent infinite products of matrices, with applications to difference equations. Computers & Mathematics with Applications, 30(11), 39-46.
  12. ^ Leach, B. G. (1969). Bessel functions of matrix argument with statistical applications (Doctoral dissertation).
  13. ^ James, A. T. (1975). Special functions of matrix and single argument in statistics. In Theory and Application of Special Functions (pp. 497-520). en:Academic Press.
  14. ^ 数値線形代数の数理とHPC, 櫻井鉄也, 松尾宇泰, 片桐孝洋編(シリーズ応用数理 / 日本応用数理学会監修, 第6巻)共立出版, 2018.8
  15. ^ Miyajima, S. (2019). Verified computation of the matrix exponential. Advances in Computational Mathematics, 45(1), 137-152.
  16. ^ Miyajima, S. (2019). Verified computation for the matrix principal logarithm. Linear Algebra and its Applications, 569, 38-61.
  17. ^ Miyajima, S. (2018). Fast verified computation for the matrix principal pth root. en:Journal of Computational and Applied Mathematics, 330, 276-288.
  18. ^ Shinya Miyajima, Verified computation for the matrix Lambert W function, Applied Mathematics and Computation, Volume 362, Pages 1-15, December 2019.

行列値関数の高精度計算

  1. ^ a b Salem, A. (2014). The basic Gauss hypergeometric matrix function and its matrix -difference equation. Linear and Multilinear Algebra, 62(3), 347-361.
  2. ^ a b c Salem, A. (2012). On a -gamma and a -beta matrix functions. Linear and Multilinear Algebra, 60(6), 683-696.
  3. ^ Salem, A. (2016). The -Laguerre matrix polynomials. SpringerPlus, 5(1), 550.
  4. ^ Salem, A. (2017). On the Discrete -Hermite Matrix Polynomials. International Journal of Applied and Computational Mathematics, 3(4), 3147-3158.
  5. ^ Dwivedi, R., & Sahai, V. (2019). On the matrix versions of -zeta function, -digamma function and -polygamma function. Asian-European Journal of Mathematics.
  6. ^ Dwivedi, R., & Sahai, V. (2019). On the basic hypergeometric matrix functions of two variables. Linear and Multilinear Algebra, 67(1), 1-19.
  1. ^ Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. en:Acta Numerica, 19, 209-286.
  2. ^ Al-Mohy, A. H., & Higham, N. J. (2011). Computing the action of the matrix exponential, with an application to exponential integrators. en:SIAM journal on scientific computing, 33(2), 488-511.
  3. ^ Del Buono, N., & Lopez, L. (2003, June). A survey on methods for computing matrix exponentials in numerical schemes for ODEs. In International Conference on Computational Science (pp. 111-120). Springer, Berlin, Heidelberg.
  4. ^ 行列の指数関数に基づく連立線形常微分方程式の大粒度並列解法とその評価 (日本応用数理学会論文誌 Vol.19, No.3, 2009, pp.293--312) 則竹渚宇, 今倉暁, 山本有作, 張紹良
  5. ^ 橋本悠香, & 野寺隆. (2016). 線形発展方程式のための Inexact Shift-invert Arnoldi 法. 情報処理学会論文誌, 57(10), 2250-2259.
  6. ^ A Note on Inexact Rational Krylov Method for Evolution Equations by Yuka Hashimoto and Takashi Nodera (2016), research report by the Department of Mathematics, Faculty of Science and Technology, Keio University.
  7. ^ Hashimoto, Y., & Nodera, T. (2016). Inexact shift-invert Arnoldi method for evolution equations. ANZIAM Journal, 58, 1-27.
  8. ^ Hashimoto, Y., & Nodera, T. (2016). Shift-invert rational Krylov method for evolution equations. ANZIAM Journal, 58, 149-161.
  1. ^ a b Davies, P. I., & Higham, N. J. (2003). A Schur-Parlett algorithm for computing matrix functions. en:SIAM Journal on Matrix Analysis and Applications, 25(2), 464-485.
  2. ^ Moler, C., & Van Loan, C. (1978). Nineteen dubious ways to compute the exponential of a matrix. SIAM review, 20(4), 801-836.
  3. ^ Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM review, 45(1), 3-49.
  4. ^ a b Higham, N. J. (2005). The scaling and squaring method for the matrix exponential revisited. en:SIAM Journal on Matrix Analysis and Applications, 26(4), 1179-1193.
  5. ^ Sidje, R. B. (1998). Expokit: A software package for computing matrix exponentials. ACM Transactions on Mathematical Software (TOMS), 24(1), 130-156.
  6. ^ Yuka Hashimoto,Takashi Nodera, Double-shift-invert Arnoldi method for computing the matrix exponential, Japan J. Indust. Appl. Math, pp727-738, 2018.
  7. ^ a b Bini, D. A., Higham, N. J., & Meini, B. (2005). Algorithms for the matrix pth root. Numerical Algorithms, 39(4), 349-378.
  8. ^ a b Deadman, E., Higham, N. J., & Ralha, R. (2012, June). Blocked Schur algorithms for computing the matrix square root. In International Workshop on Applied Parallel Computing (pp. 171-182). Springer, Berlin, Heidelberg.
  9. ^ F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang A cost-efficient variant of the incremental Newton iteration for the matrix pth root, J. Math. Res. Appl. 37 (2017), pp. 97-106.
  10. ^ S. Mizuno, Y. Moriizumi, T. S. Usuda, T. Sogabe, An initial guess of Newton's method for the matrix square root based on a sphere constrained optimization problem, JSIAM Letters, 8 (2016), pp.17-20.
  11. ^ a b Hargreaves, G. I., & Higham, N. J. (2005). Efficient algorithms for the matrix cosine and sine. Numerical Algorithms, 40(4), 383-400.
  12. ^ 立岡文理,曽我部知広,宮武勇登,張紹良,二重指数関数型数値積分公式を用いた行列実数乗の計算,日本応用数理学会論文誌,Vol.28,No.3,2018,pp. 142-161
  13. ^ a b Hale, N., Higham, N. J., & Trefethen, L. N. (2008). Computing , and related matrix functions by contour integrals. en:SIAM Journal on Numerical Analysis, 46(5), 2505-2523.
  14. ^ Tatsuoka, F., Sogabe, T., Miyatake, Y., & Zhang, S. L. (2019). Algorithms for the computation of the matrix logarithm based on the double exponential formula. arXiv preprint arXiv:1901.07834.
  15. ^ Joao R. Cardoso, Amir Sadeghi, Computation of matrix gamma function, en:BIT Numerical Mathematics, (2019)
  16. ^ Koev, P., & Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. en:Mathematics of Computation, 75(254), 833-846.
  17. ^ Hashiguchi, H., Numata, Y., Takayama, N., & Takemura, A. (2013). The holonomic gradient method for the distribution function of the largest root of a Wishart matrix. Journal of Multivariate Analysis, 117, 296-312.


「行列値関数」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「行列値関数」の関連用語

行列値関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



行列値関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの行列値関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS