科学教育 教育学

科学教育

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/08/01 17:25 UTC 版)

教育学

自然に関する知識を与えるのが科学教育だというイメージが一般に広まっているが、近年の科学教育では、生徒に科学的な概念を構築させることや、教科内容に対して生徒が持っている誤概念英語版を解消することも重視される。このような流れは構成主義に強い影響を受けてきた[15]。科学教育において構成主義が主流の考え方となったのは、生徒の思考過程・学習過程や、生徒の思考を正しい科学的思考へと変容させる方法に関する広範な調査結果に基づくものである[訳語疑問点]。構成主義において重視されるのは、教育において学習者自身が大きな役割を果たすこと、学習者が事前に持っている知識と理解が学びに有意な影響を及ぼすこと、そして学習者にとって適切なレベルの指導を与えるのが重要だということである[16]

各国の情況

日本

日本の学校教育では、小学校3年生から高等学校にかけて「理科」という教科で科学教育が行われる。日本以外の科学教育を参考にしながら科学教育の望むべきあり方を目指してはいるものの、純粋な科学教育とは少し異なった、日本独自の変遷をたどっている[17]

アメリカ

多くのにおいて、K-12の各年齢層に対してどんな内容を教えるかについて、厳しい教育課程基準もしくはカリキュラム・フレームワーク英語版が存在する。そのため、教員がすべての教科内容をカバーすることに追われて十分な指導を行えない結果になりがちである。特に、科学的方法クリティカル・シンキングなどの要素からなる科学の「プロセス」が見落とされることが多い。このような偏りにより、高度な問題解決スキルを発達させないまま標準テスト英語版に合格するような生徒が生み出されてしまう。大学レベルになると教育内容への規制は少ないものの、授業になるべく多くの内容を詰め込もうとする教員が多いため状況はより深刻である[18]

1996年、全米アカデミーズに属する米国科学アカデミーは、全米科学教育スタンダード英語版[注 8][19]を制作した。同文書は様々な形式でオンライン公開されている[20]。このガイドラインは受動的なダイレクト・インストラクション英語版の代わりに構成主義の理論に基づく探求型学習英語版を推進したことで論争を呼び続けている[18]。一部の研究者は、探求型学習の方が科学の教授法としてより効果的だと主張している。

「このスタンダードでは、生徒が観察・推論・実験のスキルを養う『プロセスとしてのサイエンス』[注 9]をなおいっそう進展させる。科学学習の中心は探究である。探究活動を行うとき、生徒は観察した事物を表現し、質問し、説明を組み立て、それを手持ちの科学知識で検証し、自分のアイディアを他の生徒に伝えなければならない。また、自分たちが立脚する前提を意識し、批判的・論理的思考を行い、別の説明が成り立たないか検討しなければならない。このような活動を通して生徒の科学知識と推論能力・思考力が結び付けられ、科学に対する理解が深められる。」[21]

米国で科学教育と教育基準への関心が高まった時期は過去にも何度かあった。その背景には、得てして米国の生徒が国際ランキングで後れを取るのではないかという不安があった[22]。一例として、ソビエト連邦が1957年にスプートニク衛星を打ち上げた直後に実施された一連の教育改革がある[23]スプートニク・ショック)。この時期に先駆けとなった最も注目すべき改革運動は、MITに設置された「物理科学検討委員会」[注 10]PSSC)が主導した「PSSC物理」である。近年では、マイクロソフトの会長だったビル・ゲイツを始めとするビジネスリーダーが「米国は経済的優位を失う瀬戸際にある」として科学教育をもっと重視するよう提言している[24]。これに同調する複数の米国業界団体は、科学・技術・工学・数学(STEM)の学位取得者を増やすことを目的とする連合組織TAP[注 11]を設立した[25]。しかしながら、近年の世論調査によれば米国の保護者は科学教育の現状に不満を抱いておらず、科学教育に対する関心レベルも低下してきている[26]

また、2009年にACT英語版が実施した全米カリキュラム調査[注 12]では、科学教育に携わる教員の間にも意思の不一致があることが明らかになった。前期中等教育(ミドルスクールおよびジュニアハイスクール)ならびに高等教育(大学など)の教員が科学的探究に関するプロセス・スキルを重視しているのに対し、後期中等教育(ハイスクール)の教員は高度な科学知識を教える方が重要だと考えている。報告書の結論において、ACTは異なる校種の教員が意思疎通を図ることの重要性を訴えた[27]

2012年科学教育フレームワーク

全米科学アカデミーが発行した報告書によると、現代社会で最重要な分野は科学、技術、教育であるにもかかわらず、アメリカでは科学、技術、工学、数学(STEM)関連の職業に就く労働者が不足している。全米科学アカデミーに設置された「新K-12科学教育スタンダードのための概念的枠組みに関する委員会」[注 13]は、K-12の科学教育を体系化することを目的として、標準化の指針となる枠組みを作成した[11]。この報告書は「K-12科学教育のための枠組み:実践活動、横断的概念、コアアイデア」[注 14]と題され、以下を提言していた。

  • 教科のコア概念および重要な教科横断的概念を少数選び、K-12の課程を通じて確実に習得させる。
  • すでに学んだ知識・能力を絶え間なく問い直しつつ、さらに新しく学んだものを積み上げていく学習スタイルが望まれる。そのためにはK-12の科学・工学教育全体を体系的に構築する必要がある。
  • 生徒が科学的探究やエンジニアリング・デザイン英語版に従事できるように、科学や工学の知識を実践と結び付ける。

この報告書[11]によれば、21世紀のアメリカ市民にとって科学教育とは、推論スキルや科学知識の応用法を学び、それをもって「個人やコミュニティが抱える問題を系統的に分析し、解決に向けて取り組む」ためのものである。委員会の主張では、これらの能力を伸ばす機会をすべての児童生徒に与えることが教育の公平の観点から肝要である。またSTEM分野に進む生徒の多様性を向上することも必要である。

2013年次世代科学スタンダード

2013年、それまで用いられていた1996年の全米教育基準に代わる新しい教育基準、次世代科学スタンダード英語版NGSS[注 15][28]が公布された。ガイドライン作成に携わった教育者によれば、その趣旨は「科学に対する無知の蔓延と闘い、各州の教育を標準化し、大学進学後に科学・技術を専攻する学生の数を増やす」ところにある[12]。特に科学のプロセスを教えることに力点が置かれており、生徒が科学的方法についての理解を深め、科学的な証拠を批判的に評価できるようになることを目指している。また気候変動や進化のようなトピックを教えるためのガイドラインが新しく盛り込まれている。NGSSの制定には26州の州政府、および全米科学教師協会[注 16]アメリカ科学振興協会、全米研究評議会[注 17]Achieve(非営利団体、数学・英語教科の教育基準の制定にも参与した)などの全米団体が関与している。

インフォーマルな科学教育

女子学生を対象としたカンファレンス。アメリカ、アルゴンヌ国立研究所
教育と識字率向上を目的とするラオスの非営利プロジェクト、Big Brother Mouse(en)が主催するイベントにおいて、児童が初めて顕微鏡を使っている。

インフォーマルな科学教育とは、博物館・科学館やマスメディア、地域プログラムなど、フォーマルな学校カリキュラムの外で行われる教育全般を指す。全米科学教師協会はインフォーマル科学教育に関する意見表明[29]を行い、生涯にわたって様々な場で科学学習を行うことを奨励した。アメリカ国立科学財団[注 18]はインフォーマル科学教育に関する研究に資金を提供している。科学技術センター協会の一部問、インフォーマル科学教育振興センター[注 19][30]はインフォーマル科学教育のコミュニティに支援を行っている。

インフォーマルな科学教育の例としては、科学館やオンライン学習サイトによるものがある。これらの多くは科学技術センター協会[31]に加盟している。インフォーマル教育を志向した科学館として米国でもっとも早く創立されたのは、サンフランシスコにあるエクスプロラトリアムやフィラデルフィアにあるフランクリン・インスティテュート(en)である。マスメディアでは、『NOVA』、『Newton's Apple』、『ビル・ナイ・ザ・サイエンス・ガイ 』、『Beakman's World』、『マジック・スクール・バス』、『DragonflyTV』などの教育番組が例に挙げられる。地域プログラムの例としては、4Hクラブ、ハンズオン・サイエンス・アウトリーチ(en)、NASAアフタースクール・プログラム[32]などがある。家庭で用いる教育商品としては1940 - 1989に定期購読方式で販売されていたシングズ・オブ・サイエンス(en)のような例がある[33]

2010年、全米アカデミーズは、全米研究評議会の研究[34]に基づく書籍『Surrounded by Science: Learning Science in Informal Environments[35]を刊行した。この本はインフォーマル科学教育の従事者に学習科学の最新の研究成果を伝えるリソースブックである。

イギリス

イングランドウェールズでは、科学はナショナル・カリキュラムの必修科目であり、5歳から16歳までの義務教育課程では全生徒が科学を履修する。この段階では科学の全分野を総合した「科学」教科を学ぶのが一般的であり、17 - 18歳のシックス・フォーム(後期中等教育課程)において物理・化学・生物の専門科目に分かれる。しかし、政府は14歳時点で成績良好な生徒に対し、義務教育の期間中にも専門教科を学ぶ機会を与えるという方針を打ち出しており、2008年9月からの履行を予定していた[36]スコットランドでは、中等教育でナショナル4・ナショナル5資格認定を受けようとする場合(13 - 15歳)に[訳語疑問点]、科学の専門教科(物理・化学・生物)を学習し始めることになる。また、専門教科ではなく「科学」科目で受験することも可能なスタンダード・グレード資格も存在するが、すべての学校でその課程が開講されているわけではない[訳語疑問点]

2006年9月、GCSE[注 20]のオプションとして「21世紀科学」[注 21]と呼ばれる科学教育コースが導入された。このプログラムは「14歳から16歳の若者すべてに科学に関する貴重な感動体験を与える」[37]とされており、英国市民の科学リテラシーを向上させることを目的としている[38]。このほか、2013年11月にOfsted[注 22]が刊行した科学教育に関する調査によれば、英国の初等・中等科学教育で実習授業の重要性が十分に認識されていないという問題がある[39]

オーストラリア

イングランドやウェールズと同様に、第10学年まで(初等 - 前期中等教育)科学は必修科目であり、自然科学の全体像をつかむため全分野を総合的に学ぶ。第11学年(後期中等教育)からは専門教科を一つ以上選択することになる。第11 - 12学年は高等教育のための準備期間と位置付けられ、専門に応じて履修科目の選択が行われるため、科学科目をまったく履修しないことも可能である。オーストラリア・ナショナル・カリキュラム委員会[注 23]は2009年に「科学のカリキュラムは、『科学の理解』、『科学的探究のスキル』、『人類の挑戦としての科学』という相互に関連する3要素を中心に構成される」と述べている[40]と述べた。これらの要素は教師が生徒を指導する際の枠組みとなる。

過去10年にわたって、オーストラリアの科学教育は科学への関心の低下という問題に見舞われてきた。第11学年で科学を履修する生徒が減少しており、キャリアに対する生徒の姿勢が固まるのがまさにこの年代であることから非常に問題視されている[41]。このような問題はオーストラリアだけでなく世界各国でも起きている。

科学教育に関する研究

科学教育の実践は、教育・学習に関する科学研究から影響を受けることがますます多くなってきている。科学教育の研究は様々な学問分野(例としてはコンピューター科学認知科学認知心理学人類学がある)から方法論を借用している。科学教育に関する研究の主な目的は、科学の学習を構成する要素を定義すること、またそれがどのように成し遂げられるかを解明することである。

ジョン・ブランスフォード英語版らは、児童生徒の思考に関する膨大な研究から得られた知見として以下の3点を挙げている[42]

前概念
自然現象がなぜ起こるかについて、学習者は自分なりの強固な概念(前概念[注 24])をあらかじめ築き上げている。学習者に正しい説明を受け入れさせるには、教員はその生徒が持っている誤概念に直接対処しなければならない。それゆえ、教員が生徒の前概念を読み取る力を身につけることと、それに基づいて教育計画を立てることが重要である。
知識の構造化
ある科学の分野に習熟するには、以下を身につけなければならない。
  • 事実的な知識[訳語疑問点]の基礎がしっかりしている。
  • 事実や概念を概念的枠組みの中に位置づけて理解することができる。
  • 知識が構造化されており、必要な知識をすぐに取り出して応用することができる。
メタ認知
自らの思考と学習について思考することは学習者のためになる。学習者は自分が何を知っていて何を知らないかということや、自分自身の考え方や、自ら導いた結論を自己評価する方法を学ばなければならない。

近年の教育工学は教師それぞれのニーズに応えられるまでに洗練されつつある。中等後の教育現場で携帯電話がどう使われているかを調査する研究[43]によれば、科学の授業にモバイル機器を利用することで学生の集中力とモチベーションが高められる。

社会構築主義指向の教育・学習科学[訳語疑問点]研究を集めた2005年の文献目録[44]によれば、そのうち64%が物理分野、21%が生物学分野、15%が化学分野に関するものである。このように物理分野の研究が主流となっている最大の理由は、物理学習には特有の困難さが存在するためだと見られる[45]。児童生徒の概念形成に関する研究[46]によれば、学習者は物理現象に対して自分なりの考えを抱いて授業に臨むが、それらは総じて学習すべき物理概念や原理とはまったく異なっている。この傾向は幼稚園から第3期教育に至るまで一貫しており、日常経験を通じて構築された概念は物理学的な考え方とは相いれないことがほとんどである。より一般的な思考と推論の様式についても同じことが言える[47]


  1. ^ the British Academy for the Advancement of Science
  2. ^ National Education Association
  3. ^ Committee of Ten
  4. ^ American Association for the Advancement of Science
  5. ^ National Committee on Science Education Standards and Assessment
  6. ^ American Association of Physics Teachers
  7. ^ 自然科学のうち生命科学を除く分野の総称。物理学はそのうちの一分野。
  8. ^ National Science Education Standards
  9. ^ science as process
  10. ^ Physical Science Study Committee
  11. ^ Tapping America's Potential
  12. ^ National Curriculum Survey
  13. ^ Committee on a Conceptual Framework for New K-12 Science Education Standards
  14. ^ A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas
  15. ^ Next Generation Science Standards
  16. ^ National Science Teachers Association
  17. ^ National Research Council
  18. ^ National Science Foundation
  19. ^ Center for Advancement of Informal Science Education
  20. ^ General Certificate of Secondary Education、前期中等教育終了時に受験する全国統一資格認定
  21. ^ 21st Century Science
  22. ^ Office for Standards in Education, Children’s Services and Skills
  23. ^ The National Curriculum Board of Australia
  24. ^ preconception、プリコンセプション
  1. ^ Bernard Leary (2005) [2004]. “Sharp, William (1805–1896)”. Oxford Dictionary of National Biography (online edition ed.). Oxford University Press. http://www.oxforddnb.com/view/article/25223 2010年5月22日閲覧。 
  2. ^ D. Layton (1981), “The schooling of science in England, 1854-1939”, in MacLeod, R.; Collins, P., The parliament of science, Northwood, England:: Science Reviews, pp. 188–210 
  3. ^ Bibby, Cyril (1959). T.H. Huxley: scientist, humanist and educator. London: Watts 
  4. ^ Del Giorno, B.J. (1969). “The impact of changing scientific knowledge on science education in th United States since 1850”. Science Education 53: 191-195. 
  5. ^ a b c National Education Association, ed (1894). Report of the Committee of Ten on Secondary School Studies: With the Reports of the Conferences Arranged by the Committee. New York: The American Book Company. https://books.google.co.jp/books?hl=en&id=1WYWAAAAIAAJ&dq=report+of+the+committee+of+ten+on+secondary+school+studies&printsec=frontcover&source=web&ots=UtOEeTn35f&sig=iJfll5ftJ4TPNu3uHl_cB12-Jv8&sa=X&oi=book_result&ct=result&redir_esc=y#PPR1,M1 2016年7月3日閲覧。 
  6. ^ a b c Weidner, L. “The N.E.A. Committee of Ten”. 2016年7月3日閲覧。
  7. ^ Hurd, P.D. (1991). “Closing the educational gaps between science, technology, and society”. Theory into Practice 30 (4): 251–9. doi:10.1080/00405849109543509. http://www.tandfonline.com/doi/abs/10.1080/00405849109543509. 
  8. ^ Jenkins, E. (1985). “History of science education”. In Husén, T.; Postlethwaite, T.N.. International encyclopedia of education. Oxford: Pergamon Press. pp. 4453–6. ISBN 0080281192 
  9. ^ Aikenhead, G.S. (1994). “What is STS teaching?”. In Solomon, J.; Aikenhead, G.S.. STS education: International perspectives on reform. New York: Teachers College Press. pp. 74–59. ISBN 0807733652 
  10. ^ プロジェクト2061など
  11. ^ a b c Helen Quinn, et al. (2012). Committee on Conceptual Framework for the New K-12 Science Education Standards; National Research Council. ed. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. The National Academies Press. ISBN 978-0-309-21441-4. http://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts 2016年7月15日閲覧。 
  12. ^ a b Gillis, Justin (2013年4月9日). “New Guidelines Call for Broad Changes in Science Education”. New York Times. http://www.nytimes.com/2013/04/10/science/panel-calls-for-broad-changes-in-science-education.html 2016年7月19日閲覧。 
  13. ^ Jegstad, Kirsti Marie; Sinnes, Astrid Tonette (2015-03-04). “Chemistry Teaching for the Future: A model for secondary chemistry education for sustainable development”. International Journal of Science Education 37 (4): 655–683. doi:10.1080/09500693.2014.1003988. ISSN 0950-0693. https://doi.org/10.1080/09500693.2014.1003988. 
  14. ^ Azmat, R.. “Manufacturing of High Quality Teachers for Chemistry Education at Higher Secondary Level in Current Era”. Pakistan Journal of Chemistry 3 (3): 140–141. doi:10.15228/2013.v03.i03.p08. https://doaj.org/article/06b17d2a189b4c50a4d999cf94575103. 
  15. ^ Taber, Keith S. (2009). Progressing Science Education: Constructing the Scientific Research Programme Into the Contingent Nature of Learning Science. Springer. ISBN 978-90-481-2431-2. https://books.google.com/books?id=96tslSL3UfwC 
  16. ^ Taber, K.S. (2011). “Constructivism as educational theory: Contingency in learning, and optimally guided instruction”. In J. Hassaskhah. Educational Theory. Nova. ISBN 9781613245804. https://camtools.cam.ac.uk/wiki/eclipse/Constructivism.html 
  17. ^ 板倉聖宣『日本理科教育史』(増補)仮説社、2009年、16-20頁。ISBN 978-4-7735-0212-1 
  18. ^ a b Glavin, Chris (2014年2月6日). “United States | K12 Academics”. www.k12academics.com. 2016年5月17日閲覧。
  19. ^ National Research Council 著、熊野善介ほか 訳『全米科学教育スタンダード : アメリカ科学教育の未来を展望する』長洲南海男監修、梓出版社、2001年。ISBN 4-87262-611-7 
  20. ^ 書籍販売ページ。フリーのhtml版、pdf版もある。
  21. ^ National Research Council, National Academy of Sciences. “National Science Education Standards”. Science Teaching Standards. National Academy Press. 2016年7月23日閲覧。
  22. ^ Mullis, I.V.S.; Martin, M.O.; Gonzalez, E.J.; Chrostowski, S.J. (2004). TIMSS 2003 International Mathematics Report: Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. TIMSS & PIRLS International Study Center. ISBN 1-8899-3834-3. http://www.eric.ed.gov/ERICWebPortal/search/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED494650&ERICExtSearch_SearchType_0=no&accno=ED494650 
  23. ^ Rutherford, F.J. (1997年). “Sputnik and Science Education”. Reflecting on Sputnik: Linking the Past, Present, and Future of Educational Reform. National Academy of Sciences. 2016年7月23日閲覧。
  24. ^ "Citing "Critical Situation" in Science and Math, Business Groups Urge Approval of New National Agenda for Innovation" (Press release). Business Roundtable. 27 July 2005. 2007年12月8日時点のオリジナルよりアーカイブ。 不明な引数|deadurl=は無視されます。(もしかして:|url-status=) (説明)
    Borland, J. (2005年5月2日). “Gates: Get U.S. schools in order”. CNET News. 2016年7月23日閲覧。
  25. ^ About TAP”. Tapping America's Potential. 2016年7月10日閲覧。
  26. ^ [1] アーカイブ 2006年6月14日 - ウェイバックマシン
  27. ^ ACT National Curriculum Survey 2009”. ACT. 2016年7月10日閲覧。
  28. ^ Next Generation Science Standards”. 2016年7月19日閲覧。
  29. ^ NSTA Position Statement: Informal Science Education”. National Science Teachers Association. 2016年7月22日閲覧。
  30. ^ Center for Advancement of Informal Science Education (CAISE)”. 2016年7月22日閲覧。
  31. ^ Association of Science-Technology Centers”. 2016年7月22日閲覧。
  32. ^ NASA and Afterschool Programs: Connecting to the Future, American Museum of Natural History, http://extension.oregonstate.edu/washington/4h/sites/default/files/nasa_and_afterschool_programs-__connecting_to_the_future_stem.pdf 2016年7月22日閲覧。 
  33. ^ Othman, Frederick C. (1947年10月7日). “Thing-of-the-Month Club will provide remarkable objects”. San Jose Evening News. https://news.google.com/newspapers?id=1hwiAAAAIBAJ&sjid=QKQFAAAAIBAJ&pg=4985,4298460&dq=things-of-science&hl=en 2016年7月22日閲覧。 
  34. ^ Committee on Learning Science in Informal Environments, National Research Council (2009). Learning Science in Informal Environments: People, Places, and Pursuits. Washington DC: The National Academies Press. ISBN 978-0-309-11955-9. http://www.nap.edu/catalog.php?record_id=12190 2016年7月22日閲覧。 
  35. ^ Fenichel, M.; Schweingruber, H.A.; National Research Council (2010). Surrounded by Science in Informal Environments. Washington DC: The National Academies Press. ISBN 978-0-309-13674-7. http://www.nap.edu/catalog.php?record_id=12614 2016年7月22日閲覧。 
  36. ^ Kim Catcheside (2008年2月15日). “'Poor lacking' choice of sciences”. BBC News website. British Broadcasting Corporation. 2016年7月22日閲覧。
  37. ^ Twenty First Century Science”. Nuffield Foundation. 2016年7月22日閲覧。
  38. ^ 辻 篤子「[www.chemistry.or.jp/opinion/doc/ronsetsu1408.pdf 考える人を育てる高校の理科教育]」『化学と工業』第67巻第8号、2014年、2016年7月22日閲覧 
  39. ^ Holman, John (2013年11月22日). “We cannot afford to get science education wrong”. The Conversation. 2013年11月25日閲覧。
  40. ^ National Curriculum Board (2009年). “Shape of the Australian Curriculum: Science”. ACARA. 2016年7月22日閲覧。
  41. ^ Hassan, Ghali (2011). “Students' views of science: A comparison between tertiary and secondary school students”. Science Educator. http://bv8ja7kw5x.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info:sid/summon.serialssolutions.com&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Students%27+Views+of+Science%3A+A+Comparison+between+Tertiary+and+Secondary+School+Students&rft.jtitle=Science+Educator&rft.au=Ghali+Hassan&rft.date=2011-10-01&rft.pub=National+Science+Education+Leadership+Association&rft.issn=1094-3277&rft.volume=20&rft.issue=2&rft.spage=54&rft.externalDocID=2674689111&paramdict=en-AU 2016年7月22日閲覧。. 
  42. ^ Committee on Developments in the Science of Learning with additional material from the Committee on Learning Research and Educational Practice (2000). How People Learn -- Brain, Mind, Experience, and School (Expanded Edition ed.). National Academies Press. p. 14. ISBN 0309070368. http://www.colorado.edu/MCDB/LearningBiology/readings/How-people-learn.pdf 2016年7月21日閲覧。 、邦訳米国学術研究推進会議編著 著、21世紀の認知心理学を創る会 訳『授業を変える : 認知心理学のさらなる挑戦』森敏昭・秋田喜代美監訳、北大路書房、2002年。ISBN 4-7628-2275-2 
  43. ^ Tremblay, Eric (2010). “Educating the Mobile Generation – using personal cell phones as audience response systems in post-secondary science teaching”. Journal of Computers in Mathematics and Science Teaching 29 (2): 217–227. http://editlib.org/p/32314. 
  44. ^ Duit, R. (2006年). “Bibliography—STCSE (Students' and Teachers' Conceptions and Science Education)”. Kiel:IPN—Leibniz Institute for Science Education. 2016年7月21日閲覧。
  45. ^ Duit, R.; Niedderer, H.; Schecker, H. (2007). “Teaching Physics”. In Abell, Sandra K.; Lederman, Norman G.. Handbook of Research on Science Education. Lawrence Erlbaum. p. 599. ISBN 978-0-8058-4713-0. https://books.google.com/books?id=Rd31m3_RU3oC&pg=PA599 
  46. ^ Wandersee, J.H.; Mintzes, J.J.; Novak, J.D. (1994). “Research on alternative conceptions in science”. In Gabel, D.. Handbook of Research on Science Teaching and Learning. New York: Macmillan. ISBN 0028970055 
  47. ^ Arons, A. (1984). “Students' patterns of thinking and reasoning”. Physics Teacher 22 (1): 21–26. doi:10.1119/1.2341444.  pp. 89–93 doi:10.1119/1.2341474; 576–581.


「科学教育」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「科学教育」の関連用語

科学教育のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



科学教育のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの科学教育 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS