プルトニウム239 プルトニウム239の概要

プルトニウム239

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/04 18:12 UTC 版)

ナビゲーションに移動 検索に移動
プルトニウム239
純度99.96%のプルトニウム環
概要
名称、記号 プルトニウム239,239Pu
中性子 145
陽子 94
核種情報
半減期 24,110年
親核種 243Cm (α)
239Am (EC)
239Np (β)
崩壊生成物 235U
同位体質量 239.0521634 u
スピン角運動量 +12
アルファ崩壊 5.156 MeV

核物理

高純度のプルトニウム239は、兵器級高濃縮ウラン235よりも格段に安く大量生産できるため、核兵器原子力発電所で利用されている。核分裂反応によりウラン235原子から2または3個の中性子が放出され、これがウラン238に捕獲されることでプルトニウム239などの同位体が生成される。プルトニウム239はウラン235を用いる発電用原子炉でも生成し、ウラン235と同じように核分裂を起こす。

プルトニウム239の臨界量は、すべての核燃料の中で最小である。稠密な球状とした場合の臨界量は約11kg[2]で、直径は10.2cmほどになる。点火機構や、中性子反射体、爆縮構造を適切に選ぶことにより、より少ない量で臨界を達成することができる。この最適化には主権国家により支援される大規模な核開発組織が必要とされる。

プルトニウム239原子1個が核分裂することにより、207.1 MeV =3.318×10-11J のエネルギーが放出される。より身近な単位に換算すると、19.98TJ/mol =83.61TJ/kg[3]、23,222,915kWh/kgとなる。

放出エネルギー源
(プルトニウム239の熱核分裂の場合)
放出エネルギー[MeV]
(平均値)
核分裂断片の運動エネルギーとして 175.8
即発中性子の運動エネルギーとして     5.9
即発ガンマ線として     7.8
核分裂そのものによるエネルギー 189.5
β−粒子として     5.3
反ニュートリノとして     7.1
遅発ガンマ線として     5.2
核分裂生成物の崩壊に伴うエネルギーの総量   17.6
即発中性子の捕獲により放出されるエネルギー   11.5
熱中性子炉で放出される熱エネルギーの総量
(反ニュートリノは寄与しない)
211.5

製造

プルトニウムはウラン238から生産される。プルトニウム239は、原子炉の燃料棒に含まれるウランの同位体が核変換を起こすことによって生じる。ウラン238が中性子照射を受けると中性子を取り込んでウラン239に変わる。この反応は、中性子の運動エネルギーが小さいときに起こりやすい。ウラン239は、その後速やかに2回のβ崩壊電子反ニュートリノを放出)を起こし、ネプツニウム239を経てプルトニウム239となる。

原子炉内の中性子照射においては、周囲に大量のウラン238や核分裂生成物、酸素などが存在するため、プルトニウム239が核分裂を起こす確率は相対的に低い。中性子照射がごく短期間だった場合に限り、再処理を行うことで高純度のプルトニウム239を得ることができる。

プルトニウム239はウラン235よりも核分裂を起こしやすく、核分裂の際に放出する中性子も多いため、臨界量は小さくなる。純プルトニウム239の場合には中性子放出を伴う自発核分裂の確率が十分小さい(10分裂/秒-kg)ため、連鎖反応が始まる前に臨界量以上の質量を集め、組み立てることができる。

しかし、実際には、原子炉で生成されるプルトニウムにはプルトニウム239がさらに中性子を捕獲したプルトニウム240も含まれる。プルトニウム240は高い確率で自発核分裂(415,000分裂/秒-kg)を起こすため、好ましくない同位体である。プルトニウム240を多量に含むプルトニウムは強い中性子線を放つため取り扱いが困難なうえ、ほとんどの核物質が核分裂に寄与しないまま核兵器が破壊される不完全核爆発を起こすからである(ただし、現代の核兵器では中性子点火器を使用し、余剰中性子はブースト反応で供給するため、不完全核爆発は大きな問題とはならない)。このため、プルトニウムを用いた核兵器はガンバレル型ではなく爆縮レンズ型に限られる(米国でもガンバレル型はごく初期に原子炉級プルトニウムを用いた試作検討が行われただけである)。さらに、プルトニウム239とプルトニウム240は化学的に分離できない上、質量数の差が小さすぎてウランのように物理的に分離を行うことも困難である。兵器級プルトニウムはプルトニウム240の含有量が7%以下のものと定義されており、これを得るためにはプルトニウム240の生成を避けるためウラン238への中性子照射を短時間に留める必要がある。

プルトニウムは、プルトニウム240の含有率により、以下のように分類される。

  • スーパーグレード 2-3%
  • 兵器級 7%未満
  • 核燃料級 7-18%
  • 原子炉級 18%以上

核兵器に使用するプルトニウムを生産するための原子炉では、高頻度で照射済みウラン238を未照射のウラン238と交換することでプルトニウム240の生成を抑えている。天然ウランや低濃縮ウランを燃料とする原子炉では、燃料のほとんどがウラン238である。しかし、ほとんどの発電用原子炉は燃料交換のために数週間に渡って原子炉を停止しなければならない。このような原子炉は、核兵器で用いるのに適切な同位体組成のプルトニウムの生産には向いていない。核兵器用プルトニウム生産炉では、炉心中央部付近にウラン238を置き、頻繁に燃料を交換できたりシャットダウンできるように構造的な工夫が加えられている。こういった原子炉は当然ながら核拡散の懸念があるため、国際原子力機関の査察が頻繁に行われる。運転中燃料交換が可能な炉型はロシアの黒鉛減速沸騰軽水圧力管型原子炉(RBMK)や重水炉などごく一部に限られるが、いずれも核拡散のリスクがある。実際にRBMKは冷戦中の旧ソ連で平和的核利用の名目で発電炉として多数建造されたが、設計上はプルトニウム生産炉として利用可能であった。一方、カナダのCANDU炉も運転中燃料交換が可能であるが、通常は生成したプルトニウムをそのまま炉心で燃焼させていた。すなわち、増殖炉でありながらアクチノイド焼却炉として運用されていた[4]。アメリカのIFR(一体型高速炉)もプルトニウム242や長寿命アクチノイドなど高速炉以外では燃焼できない同位体を処理する焼却炉モードで運転することができる。IFR燃料では燃焼できる同位体が多く、燃料も多くできるのに対して、CANDU炉ではむしろ燃料の希薄化が必要になる。つまり、IFRでは使用済み核燃料を再処理する前に、より多くの燃料を燃やすことができる。プルトニウムのほとんどは研究用原子炉やプルトニウム生産炉など増殖炉で生産される。高速増殖炉では、燃焼させた分よりも多くのプルトニウムが生成されるため、原理的には極めて効率的に天然ウランを利用することができる。実際には、プルトニウム生産のみを行うような原子炉の建設や運転は十分に難しい。高速中性子を利用する方がプルトニウム生産には有利になることから、増殖炉は高速炉であることが多い。


  1. ^ Physical, Nuclear, and Chemical Properties of Plutonium”. Institute for Energy and Environmental Research. 2015年11月20日閲覧。
  2. ^ FAS Nuclear Weapons Design FAQ Archived December 26, 2008, at the Wayback Machine., Accessed 2010-9-2
  3. ^ Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission”. Kaye & Laby Online. 2009年2月13日閲覧。
  4. ^ Jeremy J. Whitlock.. “The Evolution of CANDU Fuel Cycles and their Potential Contribution to World Peace”. 2009年2月13日閲覧。
  5. ^ Hala, Jiri; James D. Navratil (2003). Radioactivity, Ionizing Radiation, and Nuclear Energy. Brno: Konvoj. p. 102. ISBN 80-7302-053-X 
  6. ^ Bernard L. Cohen (1990). “Chapter 13, Plutonium and bombs”. The Nuclear Energy Option. Plenum Press. ISBN 978-0306435676. オリジナルのJuly 21, 2013時点におけるアーカイブ。. http://www.phyast.pitt.edu/~blc/book/chapter13.html 
  7. ^ Bernard L. Cohen (1990). “Chapter 11, HAZARDS OF HIGH-LEVEL RADIOACTIVE WASTE — THE GREAT MYTH”. The Nuclear Energy Option. Plenum Press. ISBN 978-0306435676. オリジナルのMarch 7, 2016時点におけるアーカイブ。. http://www.phyast.pitt.edu/~blc/book/chapter11.html 
  8. ^ Emsley 2001, pp. 324–329


「プルトニウム239」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「プルトニウム239」の関連用語

プルトニウム239のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



プルトニウム239のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのプルトニウム239 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS