クロス積とは? わかりやすく解説

クロス積

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/27 20:11 UTC 版)

3次元ベクトル a, b のクロス積(a × b)。クロス積は、a, b のなす平行四辺形面積に等しい大きさを持ち、平行四辺形に垂直なベクトルとなる。

クロス積クロスせき: cross product)は、3次元空間(3次元有向内積空間)において定義される、2つのベクトルから新たなベクトルを与える二項演算である。

2つのベクトル a, b のクロス積は乗算記号を用いて a × b、あるいは角括弧を用いて [a, b] と表される。

呼称

「クロス積」という呼称は、積の記号に十字(×)を用いることに由来する(同様にベクトルの内積は点()を用いることからドット積と呼ばれる)。またクロス積の別称として、ベクトル積ベクトルせき: vector product)がある。「ベクトル積」は積 a × b がベクトルとなることに由来する(同様に積 ab はスカラーとなるため、ドット積はスカラー積とも呼ばれる)。

日本語中国語では、クロス積(叉積叉积)をしばしば外積外積外积)と呼び、しばしば同義語として扱う。しかし「外積」という語は、より一般には外積代数における楔積も指し、必ずしも「クロス積」とは一致しない。 楔積とクロス積を区別のため、前者を外積と呼び後者をクロス積と呼ぶ。

outer product もまた「外積」と訳されるが、こちらは直積direct product)を意味する。

表記

2つのベクトル a, b のクロス積は、以下のように表記される。

  • 乗算記号を用いる場合:
    右手の法則によるクロス積の向き
    右手系の外積

    3次元空間上の2つのベクトル a, b のクロス積 a × b は、以下のように定義される:

    (図1)2つのベクトルのクロス積の大きさは、それらが作る平行四辺形の大きさとなる。
    (図2)3つのベクトルのクロス積は、平行六面体を定義する。

    2つのベクトルのクロス積は、2つのベクトルが作る平行四辺形の大きさに等しい(図1)。


クロス積

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/08 06:12 UTC 版)

記号の濫用」の記事における「クロス積」の解説

ベクトル a = (a1, a2, a3) と b = (b1, b2, b3) のクロス積を形式的に行列式用いて a × b = det [ i j k a 1 a 2 a 3 b 1 b 2 b 3 ] {\displaystyle \mathbf {a} \times \mathbf {b} =\det {\begin{bmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\end{bmatrix}}} と書くことができる(第一行について"余因子展開"する)。これは記号の濫用であるがクロス積の記憶術としてもまた計算においても役に立つ

※この「クロス積」の解説は、「記号の濫用」の解説の一部です。
「クロス積」を含む「記号の濫用」の記事については、「記号の濫用」の概要を参照ください。

ウィキペディア小見出し辞書の「クロス積」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

クロス積

出典:『Wiktionary』 (2021/08/22 00:51 UTC 版)

名詞

クロス(くろすせき)

  1. ベクトル積に同じ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「クロス積」の関連用語

クロス積のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



クロス積のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのクロス積 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの記号の濫用 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL).
Weblioに掲載されている「Wiktionary日本語版(日本語カテゴリ)」の記事は、Wiktionaryのクロス積 (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS