ダブルクロス積
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/10/19 10:45 UTC 版)
任意の二つのベクトル a, b の二項積に対して、そのダブルクロス積(二重交叉平方、自身との二重交叉積)は必ず 0 になる: a b × × a b = ( a × a ) ( b × b ) = 0. {\displaystyle \mathbf {ab} \mathop {_{\textstyle \times }} ^{\textstyle \times }\mathbf {ab} =(\mathbf {a} \times \mathbf {a} )(\mathbf {b} \times \mathbf {b} )=0.} しかし一般の二項積テンソルに対して、そのダブルクロス積(二重交叉平方)は一般には 0 でない。例えばどの二つも一致しないベクトルから得られる一般二項積 A = ∑ i = 1 3 a i b i {\displaystyle \mathbf {A} =\sum _{i=1}^{3}\mathbf {a} _{i}\mathbf {b} _{i}} に対して、積(平方) A × × A = 2 [ ( a 1 × a 2 ) ( b 1 × b 2 ) + ( a 2 × a 3 ) ( b 2 × b 3 ) + ( a 3 × a 1 ) ( b 3 × b 1 ) ] {\displaystyle \mathbf {A} \mathop {_{\textstyle \times }} ^{\textstyle \times }\mathbf {A} =2[(\mathbf {a} _{1}\times \mathbf {a} _{2})(\mathbf {b} _{1}\times \mathbf {b} _{2})+(\mathbf {a} _{2}\times \mathbf {a} _{3})(\mathbf {b} _{2}\times \mathbf {b} _{3})+(\mathbf {a} _{3}\times \mathbf {a} _{1})(\mathbf {b} _{3}\times \mathbf {b} _{1})]} は 0 でない。
※この「ダブルクロス積」の解説は、「二項積」の解説の一部です。
「ダブルクロス積」を含む「二項積」の記事については、「二項積」の概要を参照ください。
- ダブルクロス積のページへのリンク