プラズマ物理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > プラズマ物理の意味・解説 

プラズマ物理

(Plasma Physics から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/19 04:36 UTC 版)

プラズマ物理(プラズマぶつり)では、プラズマを理解するのに有用なもろもろの物理的概念を解説する。プラズマの全般的解説については項目プラズマを参照。

歴史

真空中の放電現象は18世紀に着目されていたが、その後しばらく忘れられていた。1835年ごろ、マイケル・ファラデーが再び真空放電に注目し、それを安定に実現した放電管内の現象を詳しく観察して、グロー、陽光柱などとともにファラデー暗部と呼ばれる構造を見いだした。真空放電の研究はその後、ウィリアム・クルックスなどによって大きく発展し、電子の発見への寄与を始めとして、現代物理学の成立に貢献した。

放電によって生成されたプラズマ自体の研究は1920年代のアーヴィング・ラングミュアに始まる。ラングミュアは1922年から約10年間、気体中の放電現象を研究し、その間にラングミュア探針を開発してプラズマの基本量(密度、温度)の測定手段を確立し、プラズマ振動を発見してその機構を解明する、などの大きな成果をあげ、いわゆるプラズマ物理学を創始した。1928年には放電によって発生した電離した気体に初めて「プラズマ」という名前を与えた。

プラズマ物理学の進展にとって、ブラソフ方程式 (Vlasov equation) の確立が重要である。ブラソフは1945年、プラズマ振動などの現象では個々の荷電粒子間の衝突は無視出来ることを論証し、衝突項を0と置いた運動論的方程式(無衝突ボルツマン方程式)と電磁場のマクスウェル方程式を組み合わせた方程式系でプラズマ振動を記述した。この方程式系はブラソフ方程式と呼ばれ、プラズマの特性にもっとも適合した方程式として広く用いられている。

ついで1946年にレフ・ランダウはブラソフの扱いを改良し、ブラソフ方程式をラプラス変換を用いて解く手法を編み出した。その結果、プラズマ振動にはランダウ減衰と呼ばれる現象があることを示した。このランダウの手法はこんにちのプラズマ理論のもっとも基本的手法として定着している。

プラズマの研究は1950年代から大きく加速した。その原動力はエネルギー源としての熱核融合の研究と宇宙空間物理学の進展である。熱核融合研究は1950年代初頭に始まり、世界的協力のもとで行われてきたが、最近になって熱核融合に必要な条件(1億 ℃ の温度、粒子密度 1020m−3)を満たす核融合プラズマが生成されて科学的実証が達成された。そして、次の段階の「システムとしての核融合炉」が実現可能であることを示す工学的実証を目的として、2005年、国際熱核融合実験炉 (ITER) をフランスに建設することが決まった。

一方、宇宙空間物理学においては、ロケット人工衛星による探査の進展とともに地球外の空間ではプラズマが極めて重要な役割を演じていることが解ってきて、プラズマのマクロな行動を記述する磁気流体力学が発達し、地球磁気圏の構造の解明などの大きな成果をあげた。

1970年に宇宙空間プラズマの研究者であるハンス・アルヴェーンが「電磁流体力学の基礎研究、プラズマ物理学への応用」によってノーベル物理学賞を受賞した。

そのほかプラズマは、プラズマディスプレイを始めとする数多くの応用によって、日常生活にも密接にかかわってきている。

プラズマの種類

気体の温度を上げて行くと構成する中性分子が電離してプラズマになる。この際、固体、液体、気体間の相転移とは異なって、気体からプラズマへの転移は徐々に起こり、電離度が非常に低くて構成分子の1%が電離しただけでも充分にプラズマの性質を示す。そのためプラズマは「物質の第四態」といっても、それは物質の三態とは大分異なった意味合いを持っている。

電離度はサハの電離公式によって評価される。電離度が低く、中性分子が大部分を占めるプラズマを弱電離プラズマ (weakly ionized plasma)、もしくは低温プラズマ (cold plasma) という。身近なプラズマは大部分がこれに属する。イオンと電子とでは質量が極端に違っていて衝突してもエネルギー交換が起こりにくいので、弱電離プラズマではイオンと電子とが別々の温度をもつのが普通である。そしてイオン温度は室温に近く、電子温度は数千度であることが多い。

温度をさらに上げるとついには中性分子がすべて電離し、イオンと電子だけで構成されるプラズマになる。この状態のプラズマを完全電離プラズマ (fully ionized plasma)、もしくは高温プラズマ (hot plasma) と言う。このとき電子温度は数万度以上になり、イオン温度もそれなりに高くなっている。熱核融合炉をつくる研究では燃料である重水素イオンに核融合反応を起こさせるため、イオン温度を10keV(1億度)程度にまで上げる。この状態のプラズマを核融合プラズマということもある。

その他 通常のプラズマの定義からは外れるが、その延長として研究されているものに次のものがある。

ダストプラズマ
中に多数のμm程度の巨視的大きさをもった微粒子(ダスト)を浮かべたプラズマがあり、これをダストプラズマ (dusty plasma)、もしくは微粒子プラズマという。そこではこれらの微粒子が多数の電子を付着して大きな負の電気を帯び、微粒子系に着目するとそれが強結合系になって自己組織化などの興味深い現象をひきおこしたりするので、近年 注目されて盛んに研究されている。記事ダストプラズマを参照。
非中性プラズマ
ミラー閉じ込めの原理を用いた荷電粒子の磁場閉じ込めにより、電気的中性から大きく外れたプラズマを、極端な場合には電子だけを蓄積して閉じ込めることができる。このようなプラズマを非中性プラズマという。
固体プラズマ
半導体中の伝導電子と空孔もプラズマ中の電子とイオンとに似た振る舞いをして、プラズマ振動を起こしたりする。この観点で見たとき、それを固体プラズマと呼ぶ。

プラズマの要件

プラズマはイオンと電子との混合物で電気的に中性な物質である。それが真にプラズマらしく振る舞うには次の3つの要件を満たさなければならない。

  1. その物質系の大きさ Lデバイの長さ λD より充分大きくなければならない。すなわち L ≫ λD
  2. 考えている現象の時間スケール tプラズマ振動の周期よりも長くなければならない。すなわち t ≧ 1/ωpe
  3. 半径が λD の球の中の粒子数 Λ が充分大きくなければならない。すなわち Λ ≫ 1。Λ をプラズマ・パラメタという。

これらの要件の意味は次の通りである。

デバイの長さ
デバイの長さ λD はプラズマ中で電場が遮蔽される現象(デバイ遮蔽)の特徴的な長さであり、λD より小さい領域では電気的中性が保証されない。従って、考えている物質系がプラズマとして振る舞うためには、その空間的大きさ L が λD よりも充分に大きくなくてはならない。すなわち要件1が必要である。
特に容器に入ったプラズマはその容器壁との境界に λD の厚さのシースと呼ばれる非中性領域が出来るから、これはシース部分を除くプラズマ本体が充分な大きさをもつことを意味する。
プラズマ振動数
(電子)プラズマ振動数 ωpeプラズマ振動の固有振動数で、その逆数 1/ωpe は電気的中性が破れたとき、電子がそれに反応して中性を取り戻すのに必要な時間を表す。そこでこれより短い時間内では電気的中性が保証されず、プラズマらしく振る舞わない。従って、イオンと電子との混合物がプラズマとして振る舞うためには、考えている現象の時間スケール t が要件2を満たして充分に大きいことが必要である。
プラズマ・パラメタ
要件3は次のように考える。すなわち半径 λD の球の中の粒子数であるプラズマ・パラメタ Λ の値が1の程度だと、実際には他の荷電粒子は時々やってきてクーロン力を及ぼして去るだけであり、沢山の粒子の協同作用であるデバイ遮蔽などが実質的意味を持たない。逆に Λ の値が充分に大きければ、荷電粒子は常に沢山の粒子と作用を及ぼしあっていて、全体としてプラズマらしくまとまって行動する。これが上の条件の意味である。
この Λ ≫ 1 の条件はまた次の条件の各々と等価である。詳しくは項目プラズマ・パラメタを参照。
  1. 粒子間相互作用のポテンシャルエネルギーの平均が粒子の運動エネルギーよりずっと小さい。一般に粒子間相互作用のポテンシャルエネルギーが運動エネルギーより小さい粒子系を弱結合系、逆に運動エネルギーより大きい粒子系を強結合系というが、Λ ≫ 1 はプラズマが弱結合系であることを意味する。
  2. 進行方向が大きく曲がる衝突に必要な近接距離 r0 がデバイ長さ ΛD より充分小さい。つまり粒子はデバイの長さより充分内側まで近づかないと衝突が起こらない。r0 はその距離でのクーロンポテンシャルが熱運動エネルギー kBT と等しいとして得られ、r0 = e2/(4πε0kBT) で与えられる。
  3. 粒子の衝突頻度 νc がプラズマ振動数 ωpe よりも充分小さい。すなわちプラズマ中の電子を主体とする現象では粒子間の衝突は無視でき、プラズマは無衝突とみなせる。

代表的なプラズマの例

エネルギー温度とその単位

プラズマの理論では温度 T は常にボルツマン定数 kB との積 kBT の形で現れ、これはエネルギーの次元を持っていて、(3/2)kBT は1粒子当たりの運動エネルギーを表す。そこで絶対温度の代わりにそのエネルギーを温度として用いると、その値は構成粒子の運動エネルギーと直接結びついていて非常に便利で、プラズマ物理ではもっぱらこの温度を用いる。単位として電子が1ボルトの電位差を通過して得られるエネルギーを用い、それを eV と書いて、電子ボルト (electron volt) と呼ぶ。絶対温度との間には 1 eV ≒ 1.16 × 104 K の関係があり、1 eV はおおよそ1万度と考えてよい。また場合に応じて keV (= 103eV) などの単位を用いる。

この単位を用いると、たとえば水素のイオン化電圧は 13.6 V であるから、電離にはマクスウェル分布の高速度側裾の電子が効率的に働くことと考え合わせて、電子温度 10 eV で水素プラズマが完全電離になることが素直に理解される。

代表的なプラズマの例とその特性

次に宇宙および地上のプラズマの代表的な例とその特性値をあげる。

所在場所 n (m−3) Te (eV) Ti (eV) λD (m) ωpe (s−1) Λ α
HII領域 104–1010 ~1 ~1 102–10−1 104–107 107–1010 ~1
太陽コロナ 1014 102 102 7×10−3 5×107 108 1
地球軌道付近 2–5×106 10 10 10 105 1010 1
電離層(F2層) 1012 ~0.1 ~0.1 2×10−3 6×107 104 10−3
広告用ネオンサイン 5×1018 2.5 0.15 5×10−6 2×1010 103 10−4
小型定常放電装置 1016–1020 1–5 0.1–5 5×10-3–10−6 2×109–1011 102–105 10−10–10−4
核融合炉(DT反応) 1020 104 104 10−4 6×1011 108 1

ここで n は電子密度 (m−3)、Te は電子温度 (eV)、Ti はイオン温度 (ev)、λDデバイの長さ (m)、ωpeプラズマ振動数 (s−1)、Λ はプラズマ・パラメタ、α は電離度を表す。

存在場所で言えば、まず銀河系内で銀河面に近い場所は、星と星との間にも平均で 5×105/m3 程度の密度の水素原子でみちているが、そのうちB1型星より高温の星の近所やガス星雲の内部ではこれらの原子が完全電離してプラズマ状態になっていて、HII領域と呼ばれ、よく研究されている。ちなみに HI は中性水素原子を表す。

次に太陽系内に戻ると、まず太陽コロナはかなり高密度の完全電離プラズマからなる。その外側でも至る所に完全電離プラズマが存在するが、表には地球の公転軌道付近のプラズマの特性を挙げてある。

さらに地球に近づくと、よく知られた電離層がある。表では密度がもっとも大きいF2層(高さ 200–500km)についての値を挙げてある。このプラズマは完全電離ではなく、弱電離である。

地上ではプラズマはもっぱら人工的につくられる。よく知られた例は蛍光灯、広告用ネオンサインなどの放電管内のプラズマで、いずれも弱電離プラズマである。

実験室内の小型装置では、直流または交流の電場をかけ、気体内で放電を起こさせてプラズマをつくることが多い。ここではそのような小型放電装置でつくられるプラズマのおよそのパラメタ範囲を示してある。

一番下の核融合炉では重水素 (D) と三重水素(トリチウム、T)とを核融合させてエネルギーを得るに必要なプラズマの特性を挙げてある。これらの特性のプラズマはすでに作られている。究極的な核融合炉としては、弱放射性気体である三重水素を使わないD-D反応を用いた炉が望ましいが、それを達成するには密度とイオン温度をさらに上げて n = 1021/m3Ti = 3×104eV 程度にする必要がある。

この表から分かるとおり、これらのプラズマはいずれもプラズマの3要件を充分に満たしている。

磁場中の荷電粒子の運動

プラズマ中では荷電粒子に対する粒子間の個々の衝突の影響は小さく、荷電粒子の運動はまずは外から加えられた電磁場とプラズマ自身のつくり出す電磁場の作用により定まる。従ってプラズマの振舞いの理解には電磁場中での荷電粒子の行動を知ることが基本になる。ここではそのために有用ないくつかの概念について解説する。

旋回運動

一様定常な磁場中では荷電粒子は磁場と速度の双方に垂直な力、ローレンツ力を受けるので、磁場に垂直な方向に円運動する。その際イオンと電子では荷電の符号が逆なので、旋回の向きも逆になる。この運動をサイクロトロン運動ともいう。このように円運動する粒子の行動を調べるには、その円運動の中心を追うのが便利である。円運動の中心を旋回中心(gyration center)、もしくは案内中心(guiding center)と呼ぶ。 一方、粒子は磁場方向には力を受けないので旋回中心は1本の磁力線に沿って一定の速さで進む。従って粒子は磁力線に沿ってらせん形を描いて運動することになる。 一様定常な磁場 B の中の円運動の振動数 Ω は粒子の荷電を q (正負あり)、質量を m とすると

カテゴリ




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「プラズマ物理」の関連用語

プラズマ物理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



プラズマ物理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのプラズマ物理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS