二重平方数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 二重平方数の意味・解説 

二重平方数

(4乗数 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/07 13:47 UTC 版)

算術における四乗数(しじょうすう、よんじょうすう、: bi­quadratic number; 複平方数[注 1])あるいは二重平方数[1]とは、通常、自然数の四乗(fourth power)すなわち「平方の平方」 (bi­quadratic)

n4 = n3 × n = n × n3 = n2 × n2 = n × n × n × n

になっているような数 (forth power of n) を言う。図形数として、八胞体状に積み上げた点の数として表されるため、八胞体数(はちほうたいすう、: tesseractic number)ともいえる[注 2]。これは平方数を「四角数」、三乗数を「立方体数」(六面体数)と呼ぶことの延長である。

最小の四乗数は 14 = 1 であり、四乗数は無数にある。小さい数から順に列記すると

1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, … (オンライン整数列大辞典の数列 A000583

である。

広義では有理数あるいはより一般のでの「数」の四乗を考える場合もあり、その際は四乗元と呼ぶ方が誤解が少ない。

性質

四乗数 n4 は (n2)2 と変形されるため全て平方数である。

一般に p を素数とすると p4 は 1, p, p2, p3, p4 の5つの約数を持つ。例えば 24 の約数は 1(=20), 2(=21), 4(=22), 8(=23), 16(=24) の5つである。逆に、約数をちょうど5つ持つ自然数は素数の四乗である。

日本語で用いられる一万一億一兆などの数詞が指す数は 104n = (10n)4 より全て四乗数である。

四乗数の下2桁は、十進法では 00, 01, 16, 21, 25, 36, 41, 56, 61, 76, 81, 96 の12通りの内いずれかである。一般の記数法については後述する。

n番目までの四乗数の総和Sn = Portal:数・プロジェクト:数




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「二重平方数」の関連用語


2
16% |||||


4
16% |||||


6
14% |||||

7
14% |||||

8
14% |||||


10
12% |||||

二重平方数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



二重平方数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの二重平方数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS