|
この項目では、一般次元多様体について説明しています。
|
立体射影が球面の表面を平面に射影できるのと全く同じように、3 次元球面の表面も 3 次元空間に射影できる。このイメージは 3 次元空間に射影された 3 つの座標方向を示している: parallels(赤)、
meridians(青)、hypermeridians(緑)。ステレオグラフ射影の
等角性によって、曲線は 4 次元においてそうであるように互いに直交に(黄色の点で)交わる。曲線のすべては円である: <0,0,0,1> と交わる曲線は無限大の半径を持つ(=直線)。
数学において、n 次元球面(n-じげんきゅうめん、英: n-sphere, n 球面)は普通の球面の n 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は
-
(
n はユークリッド空間の次元であり、体積がここにリストされている球体の内在的次元でもあるが、表面積がここにリストされている球面の内在的次元よりも 1 大きいことに注意。)曲がった赤の矢印は異なる
n に対する公式の間の関係を示す。各矢印の指す先の式はその矢印の始点の式に矢印の頭の因子を掛けたものに等しい。もし下の矢印の向きを逆にすれば、それらの矢印の頭は 2
π/(
n − 2) を掛けることを示すことになる。別の言い方をすれば、
n + 2 次元空間内の球面の表面積
Sn + 1 はちょうど、2
πR を、
n 次元空間内の球面によって囲まれる体積
Vn に掛けたものである。