遺伝暗号の拡張におけるaaRSの使用
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/21 04:51 UTC 版)
「アミノアシルtRNA合成酵素」の記事における「遺伝暗号の拡張におけるaaRSの使用」の解説
aaRSはアミノ酸とコドンの対応づけを行う酵素であるため、遺伝暗号の拡張のためにaaRSの基質特異性の改変を行うことが行われた。1998年にFurterはp-フルオロフェニルアラニン(p-F-Phe)が酵母のフェニルアラニルtRNA合成酵素 (PheRS) にミスチャージされること、変異型PheRSを持つ大腸菌はp-F-Pheを翻訳に使いにくいことを利用した。すなわち酵母のPheRSと終止コドンの一つのアンバーコドン (UAG) に対応するアンチコドンを有するアンバーサプレッサーtRNAPheをその大腸菌に導入することで、アンバーコドンにp-F-Pheが対応付けられ、一方で通常のフェニルアラニンに対応するコドンにはp-F-Pheが導入されない生物系を人為的に作製した。しかし、実際には外界からp-F-Pheを過剰に加えても、酵母のPheRSがフェニルアラニンをチャージする、などの理由により、アンバーコドンには2割以上のp-F-Phe以外の標準アミノ酸が対応付けられた不十分なものであり、真の遺伝暗号の拡張とみなされていない。 一方、スクリプス研究所のピーター・シュルツらは2001年に同様の発想のもと、古細菌のチロシルtRNA合成酵素 (TyrRS) とアンバーサプレッサーtRNATyrを大腸菌内に導入し、大腸菌を用いた大規模スクリーニング法によって、古細菌TyrRSの基質特異性をO-メチルチロシンに高度に特異的なものにすることに成功した。これにより、その大腸菌の遺伝暗号はアンバーコドンにO-メチルチロシンが対応する遺伝暗号へと拡張したこととなる。 このスクリーニング法を用いることで、TyrRS変異体の中から種々の非天然型アミノ酸を特異的に認識するaaRSが選択され、一気にアミノ酸側から見た遺伝暗号の拡張が進んだ。
※この「遺伝暗号の拡張におけるaaRSの使用」の解説は、「アミノアシルtRNA合成酵素」の解説の一部です。
「遺伝暗号の拡張におけるaaRSの使用」を含む「アミノアシルtRNA合成酵素」の記事については、「アミノアシルtRNA合成酵素」の概要を参照ください。
- 遺伝暗号の拡張におけるaaRSの使用のページへのリンク