解析半群とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 解析半群の意味・解説 

解析半群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/08/20 04:53 UTC 版)

ナビゲーションに移動 検索に移動

数学、特に関数解析学の分野における解析半群(かいせきはんぐん、: analytic semigroup)とは、強連続半群の一種である。解析半群は、偏微分方程式の解において用いられる。強連続半群と比較して解析半群は、初期値問題の解のより良い正則性や、無限小生成作用素の摂動に関するより良い結果や、その半群と、無限小生成作用素のスペクトルとの関係などを与える。

定義

Γ(t) = exp(At) を、無限小生成作用素 A を備えた、バナッハ空間 (X, ||·||) 上の強連続一パラメータ半群とする。Γ は次を満たすとき、解析半群と呼ばれる:

  • ある 0 < θ < π ⁄ 2 に対して、連続線型作用素 exp(At) : X → Xt ∈ Δθ へと拡張される。ここで
である。また、st ∈ Δθ に対して、通常の半群の条件 exp(A0) = id および exp(A(t + s)) = exp(At)exp(As) が成立し、各 x ∈ X に対して、exp(At)xt連続関数である。
  • すべての t ∈ Δθ \ {0} に対して、exp(At) は一様作用素位相英語版の意味において、t について解析的である。

特徴

解析半群の無限小生成作用素は、次に述べる特徴を持つ:

バナッハ空間 X 上で稠密に定義された線型作用素 A が解析半群の生成素であるための必要十分条件は、半平面 Re(λ) > ωAレゾルベント集合に含まれ、

が Re(λ) > ω に対して成立する定数 C が存在するような、ある ω ∈ R が存在することである。このとき、そのようなレゾルベント集合は実際には、ある δ > 0 に対して、扇状の領域

を含んでいる。そして、上と同様の不等式がこの領域において成立する。このとき、半群は

と表される。ここで γ は、扇状の領域

に含まれるような、e∞ から e+∞ への任意の曲線である。ただし π ⁄ 2 < θ < π ⁄ 2 + δ とする。

参考文献

  • Renardy, Michael; Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second edition ed.). New York: Springer-Verlag. pp. xiv+434. ISBN 0-387-00444-0. MR2028503. 



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「解析半群」の関連用語

解析半群のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



解析半群のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの解析半群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS