加群のテンソル積とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 加群のテンソル積の意味・解説 

加群のテンソル積

(環上の加群のテンソル積 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/04 16:45 UTC 版)

ナビゲーションに移動 検索に移動

数学において、加群のテンソル積 (tensor product of modules) は双線型写像(例えば積)についての議論を線型写像(加群準同型)の言葉でできるようにする構成である。その加群の構成はベクトル空間テンソル積の構成と類似であるが、可換環上の加群の組に対して実行して第三の加群を得ることができ、また任意の上の左加群と右加群の組に対しても実行できてアーベル群が得られる。テンソル積は抽象代数学ホモロジー代数学代数トポロジー代数幾何学の分野において重要である。ベクトル空間に関するテンソル積の普遍性は抽象代数学のより一般的な状況に拡張される。それによって線型演算を通じて双線型あるいは多重線型演算を研究することができる。代数と加群のテンソル積は係数拡大のために使うことができる。可換環の場合には、加群のテンソル積を繰り返して加群のテンソル代数を作ることができ、加群の積を普遍的な方法で定義することができる。

多重線型写像

R、右 R-加群 MR、左 R-加群 RN、アーベル群 Z に対して、M × N から Z への双線型写像 (bilinear map) あるいは平衡積 (balanced product) とは関数 φ: M × NZ であってすべての m, m′ ∈ Mn, n′ ∈ NrR に対して次の3条件が成り立つものである:

  • φ(m + m′, n) = φ(m, n) + φ(m′, n)
  • φ(m, n + n′) = φ(m, n) + φ(m, n′)
  • φ(m · r, n) = φ(m, r · n).

M × N から Z へのすべての双線型写像の集合は Bilin(M, N; Z) で表記される。

最後の性質はベクトル空間に対する定義とわずかに異なる。これは必要である;なぜならば Z はアーベル群であるとしか仮定されていないなので r · φ(m, n) は意味をなさない。

双線型写像 φ, ψ に対し演算を pointwise に定義すると φ + ψ は双線型写像であり −φ も双線型写像である。これは集合 Bilin(M, N; Z) をアーベル群にする。単位元は零写像である。

固定された MN に対し、写像 Z ↦ Bilin(M, N; Z)アーベル群の圏から集合の圏への関手である。射の部分は群準同型 g : ZW を関数 φgφ に写す — これは Bilin(M, N; Z) から Bilin(M, N; W) へ行く — ことで与えられる。

定義

M, NR を前節のようにする。R 上のテンソル積 (tensor product)

すべてのアーベル群 Z とすべての双線型写像
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。
出典検索?"加群のテンソル積" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
2008年2月

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「加群のテンソル積」の関連用語







7
52% |||||



10
18% |||||

加群のテンソル積のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



加群のテンソル積のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの加群のテンソル積 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS