期待値・分散とは? わかりやすく解説

期待値・分散

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/09/10 03:22 UTC 版)

二項分布」の記事における「期待値・分散」の解説

二項分布 B(n, p) に従う確率変数 X に対し、X の期待値 E[X] は E [ X ] = n p {\displaystyle E[X]=np} であり、分散 V[X] は V [ X ] = n p ( 1 − p ) {\displaystyle V[X]=np(1-p)} となる。 X の最頻値は、(n + 1)p 以下の最大整数となる。ただし、m = (n + 1)p が整数となるときは、m − 1 と m の双方最頻値となる。

※この「期待値・分散」の解説は、「二項分布」の解説の一部です。
「期待値・分散」を含む「二項分布」の記事については、「二項分布」の概要を参照ください。

ウィキペディア小見出し辞書の「期待値・分散」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「期待値・分散」の関連用語

期待値・分散のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



期待値・分散のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの二項分布 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS