数値的安定性と良条件性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/30 23:37 UTC 版)
誤差が発生すると、計算を通じてそれが伝播していく。実際、電卓やコンピュータでの(浮動小数点数の)加算は正確ではなく、反復計算をすると計算はさらに不正確になっていく。このような誤差の研究から数値的安定性の概念が生まれた。あるアルゴリズムが数値的に安定であるとは、誤差が発生・伝播したときに計算が進むにつれてその誤差があまり大きくならないことを意味する。これは問題が良条件の場合のみ可能である。良条件とは、データが少しだけ変化したとき、解も少しだけ変化するような性質を持つことを意味する。逆に問題が悪条件であれば、データに含まれる誤差は大きく成長する。 しかし、良条件の問題を解くアルゴリズムは必ずしも数値的に安定とは言えない。数値解析の技術は、良条件の問題を解く安定なアルゴリズムを見つけるためにある。例えば、2の平方根(約 1.41421)の計算は良条件問題である[要出典]。この問題を解く多くのアルゴリズムは、初期近似値 x1 から開始して 2 {\displaystyle {\sqrt {2}}} になるべく近い値を求めようとする。つまり、x1=1.4 として、よりよい近似値を x2、x3、…と計算していく。有名なアルゴリズムとしてバビロニアの平方根があり、この場合の式は xk+1 = xk/2 + 1/xk である。別の方法として、例えば、xk + 1 = (xk2−2)2 + xk という式を使うとする(仮に Method X とよんでおく)。この2つのアルゴリズムについて、x1 = 1.4 と x1 = 1.42 の場合の反復結果の一部を以下に示す。 バビロニアバビロニアMethod XMethod Xx1 = 1.4 x1 = 1.42 x1 = 1.4 x1 = 1.42 x2 = 1.4142857... x2 = 1.41422535... x2 = 1.4016 x2 = 1.42026896 x3 = 1.414213564... x3 = 1.41421356242... x3 = 1.4028614... x3 = 1.42056... ... ... x1000000 = 1.41421... x28 = 7280.2284... 見ての通り、バビロニアの平方根は初期値がどうであっても素早く収束するが、Method X は初期値が1.4の時は収束が遅く、1.42を初期値にすると発散する。したがって、バビロニアの平方根は数値的に安定だが、Method X は数値的に不安定である。
※この「数値的安定性と良条件性」の解説は、「数値解析」の解説の一部です。
「数値的安定性と良条件性」を含む「数値解析」の記事については、「数値解析」の概要を参照ください。
- 数値的安定性と良条件性のページへのリンク