スキーム (数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > スキーム (数学)の意味・解説 

スキーム (数学)

(スキーム_(代数幾何学) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/24 14:47 UTC 版)

数学におけるスキーム(あるいは概型) (: scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。

スキームを通じて圏論的に定義される様々な概念は、大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。このためヴェイユザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。

定義

環のスペクトル

可換環 A に対して、 A素イデアルの全体の集合 Spec(A) は Aスペクトルとよばれる。A の部分集合 M に対し

原文と比べた結果、この節には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。

アレクサンドル・グロタンディーク (Alexander Grothendieck) は、決定的な定義を提唱し、実験的示唆と部分的な発展の出発点をもたらした。彼は可換環のスペクトルを素イデアルがザリスキー位相に関してなす空間として定義したが、このスペクトルに環のを付け加えた組をスキームとしたのである。全てのザリスキー開集合へ可換環を対応させ、その集合の上に定義された「多項式函数」の環を考えた。これらの対象は「アフィンスキーム」であり、次に一般的なスキームはいくつかのアフィンスキームを互いに「はり合わせる」ことにより得られる。一般的な多様体はアフィン多様体を貼り合わせることにより得られるという事実の類似である。

スキームの概念の一般性は、最初は批判された。幾何学的な解釈を直接持たないので除かれたスキームもあり、これらがスキームの概念の把握を困難にしていた。しかしながら、任意のスキームを考えるとスキームの圏はより良い振る舞いをもつようになる。さらに、例えばモジュライ空間のように、自然な見方、考え方が「非古典的」なスキームへと導いていった。多様体ではないこれらスキーム(単純に多様体から構成することができないスキーム)の出現は、古典的なことばで提出可能であった問題に対しても、この問題の新しい基礎付けが緩やかに受け入れられていった。

ピエール・ドリーニュ (Pierre Deligne) やデヴィッド・マンフォード (David Mumford) やミハイル・アルティン (Michael Artin) による、本来はモジュライ問題である代数的空間英語版代数的スタックでのその後の仕事により、さらに現代代数幾何学の幾何学的柔軟性を拡大していった。グロタンディークは、スキームの一般化として、環付きトポスのあるタイプを提唱し、環付きトポスの次に彼が提唱した相対スキーム英語版は、M.ハキム (M. Hakim) により開発された。最近の高次代数スタック英語版やホモトピックな導来代数幾何学は、さらに幾何学的直感の到達範囲を拡大する必要があり、ホモトピー理論に近い精神を代数幾何学へもたらす。

スキームの圏

局所環付き空間の射を射とすると、スキームはをなす。

スキームからアフィンスキームへの射は、次の反変な随伴函手により、環準同型のことばで完全に理解される。全てのスキーム X と全ての可換環 A に対して、自然な同値関係

原文と比べた結果、この節には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。

可換環 R を研究するときに可換環論において R 加群が中心的なのと同様に、構造層 OX を持つスキーム X の研究において OX 加群が中心的である。(OX 加群の定義については局所環付き空間を参照。)OX 加群の圏はアーベル圏である。特に重要なのは X 上の連接層であり、これは X のアフィン部分上の有限生成な(通常の)加群から生じるものである。X 上の連接層の圏もまたアーベル圏である。

スキーム X の構造層 OX の切断は正則函数と呼ばれ、これは X の各開集合 U 上で定義される。OX可逆部分層は、O 
X
 
と書かれるが、乗法について可逆な正則関数の芽のみからなる。ほとんどの場合、層




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  スキーム (数学)のページへのリンク

辞書ショートカット

すべての辞書の索引

「スキーム (数学)」の関連用語




4
34% |||||







スキーム (数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



スキーム (数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのスキーム (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS