ウッドの記法とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ウッドの記法の意味・解説 

ウッドの記法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/08/06 06:21 UTC 版)

ウッドの記法(—のきほう)[1][2][3][4]は結晶表面の結晶構造の表記法の1つである。ウッドの記法は、Woodの記法あるいはウッドの表記法などともいわれる。

一般に結晶表面は2次元結晶[3][4][5]となることが多いが、表面再構成吸着により、理想表面とはことなる周期構造を持つことが殆どである。そのため、『結晶をどのような方向に切断したのか』をあらわすミラー指数[3][4]に加え、結晶表面の周期性(特に並進対称性)をあらわす何らかの方法が必要である。そこで、結晶表面の現実の(二次元)結晶構造のうち、格子の構造(もっといえば結晶軸[3][4][5])のみに着目し、『その表面の結晶軸』を『理想表面の結晶軸』を基準に行列を用いて表すこと(『行列による表記法』)が提案された。二次元結晶の結晶軸は、数学的には『二本の幾何ベクトルの組』である。そして、ベクトル間の一次変換(線形変換)を表すには必然的に行列が必要となるが、『行列がどのような変換を表すか』を 直感的に把握するのは難しい。そこで、本式の表記法である行列による表記法を用いずとも表記できる場合には、直感的にわかりやすい簡略表記として提案された『ウッドの記法』に基づいて Si(111)-(7×7) のような形で表面の構造を表すことが多い。

文献によっては、行列による記法、ウッドの記法は『結晶表面の構造を表面第一層の結晶軸を基準にして、表面の構造を記述するもの』と定義しているが、『それらの文献における表面第一層』とは、本記事による理想表面とほぼ同義である。

なお、表面第一層とは、表面科学における紛らわしい専門用語のひとつである。紛らわしいというのは、『表面第一層』というのが文字通りの意味での表面の1層つまり『結晶内部と真空との境界』を指さない場合がある点においてである。『結晶内部と真空との境界』を指さない場合の『表面第一層』の意味にもいろいろなものがあるが、ここでは、本文でいっている意味での『表面第一層』について説明する。一般に『結晶内部と真空との境界』から、切断方向(ミラー指数を用いて(klm)面とする)と平行な数層下の層(原子団が存在する平面)はバルクの構造と同じ並進対称性、つまり((klm)面の)理想表面と同じ構造をもつ平面となる。そのような層のうち、最も真空側に近い層を表面第一層とよぶ。二層目以降は真空側とは反対側に第二層、第三層…と名づけていく。このような名づけ方で呼ばれる『表面第一層』をまぎらわしさを避ける表現で言うとしたら『理想表面第一層』という言い方が妥当である。

行列による記法

まず、本式の表記法である『行列による記法』[2][3][4]について説明する。『行列による記法』は『行列による表記法』、『行列表記法』等とも言われる。ある結晶表面の『理想表面の結晶軸』が

Si(111)-(7×7)表面の走査型トンネル顕微鏡像および模式図(DASモデル)。

参考までに『結晶表面の構造そのもの』を知ることと『格子の構造』を知ることの間に大きなギャップがあることを強く印象付けるエピソードを紹介する。Si(111)表面の最安定構造が(7×7)構造であることは、低速電子回折法(LEED)等の 電子回折法の実験から早々に分かっていた。つまり周期性(特に並進対称性)について(つまり格子の構造)の知見は早い段階で得られていた。しかし、実際の原子配列が決着するまでには長い時間がかかり、25年もの永い間様々な構造モデルが発表され、議論された。このエピソードは、格子の構造だけでは表面の構造の全てを語るどころか、原子配列すら完全には記述できないことを強く印象付ける。Si(111)-(7×7)表面の原子配列は東京工業大学高柳邦夫らが提唱したDASモデル[7]というとても複雑なものに決着した。決着の決め手となったのは走査型トンネル顕微鏡(STM)[8]による測定結果がDASモデルと一致したことである。

これらの記法の曖昧さ?

次に、行列による記法、ウッドの記法は共に、(現実の)表面、理想表面の両方の "結晶軸の取り方"に依存するため、一見、本質的な曖昧さがあるように見える。ただし、 結晶軸の標準的な取り方は、各二次元格子に対して決められていて(ブラベー格子を参照)[5]、それ以外の取り方はしない。そのため、行列による記法には曖昧さはない。従ってウッドの記法も、本質的には曖昧さはないのだが、前述のように『回転角の省略』がしばしば国際誌の上ですら慣例的に行われるので、その意味での曖昧さはある。

曖昧さ?の証明

"結晶軸の取り方"は標準化されていて、それ以外の取り方をしないので、行列による記法、ウッドの記法には共に曖昧さが無いことを先に説明した。 ここでは、 敢えて『結晶軸の取り方が標準化されていない』つまり、『結晶軸の取り方に任意性がある』場合、 言い換えれば、ウッドの記法や行列による記法の定義が結晶軸ではなく、基本並進ベクトルに基づいて定義されていたとした場合、 表記に本質的な曖昧さが生じることを 数学的に証明してみよう。

証明

がある表面の理想表面の格子の基本並進ベクトルとする。このとき も又同じ格子の基本並進ベクトルである。

このとき、方向に 3倍し、方向に2倍することで得られる格子を 方向に 3倍し、方向に2倍することで得られる格子を としよう。このときの基本並進ベクトルは、 の基本並進ベクトルは、である。

ここでの終点が、の格子点だと仮定すると 整数,により、

となるが、このことは、

となることを意味する。ここで、は一次独立であるため、は共に0でなければならない。 従って、は整数ではありえない。このことは矛盾である。

従って、は、の格子点ではない。このことは が格子として異なることを意味する。■

誤用の慣例化

ウッドの記法においてもGe(111)-c(2×8)表面のように、 表記方法に誤用が定着した 例がある。

Ge(111)-c(2×8)表面においては、確かに、理想表面の結晶軸を と表記した場合、 「が張る平行四辺形」に中心点を加えたものを ユニットセル(プリミティブセルではない)で定まる格子を考えれば確かに結晶の並進対称性を 完全に表記できる。つまり、全ての格子点を表記できる。また、この表面のアドアトム層は、これらの格子点に2つの原子を8A離して配置した構造をとっている。

ところが、このようにして取られたユニットセルは、この格子に対応したブラベー格子の取り方に反している。本来的にはこの格子は、別の面心長方格子を取るべきである。

脚注

  1. ^ C.A.Wood,Journal of Applied Physics,35,1306(1964)
  2. ^ a b c 日本表面科学会 (編集) 「ナノテクノロジーのための表面電子回折法 (表面分析技術選書)」 丸善 (2003)
  3. ^ a b c d e f g h i キッテル 固体物理学入門 第8版(上)、(下) / Charles Kittel (原著), 宇野 良清、他(翻訳), . -- 東京 : 丸善 , 2005.12 目次、検索両方にウッドの記法に関する記述がないが、下巻19章に載っている。
  4. ^ a b c d e f g h 表面科学・触媒科学への展開 / 川合真紀、堂免一成著 . -- 東京 : 岩波書店 , 2003.6 (岩波講座現代化学への入門 / 岡崎廉治 [ほか] 編 ; 14)
  5. ^ a b c d e 物質の対称性と群論/今野 豊彦 . -- 東京 : 共立出版, 2001.10
  6. ^ a b ベクトル・テンソルと行列 / ジョージ アルフケン (原著), 権平健一郎、他(翻訳), . -- 東京 : 講談社 , 1999.11
  7. ^ K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci. Technol. A 3, 1502 (1985).
  8. ^ G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ウッドの記法」の関連用語

ウッドの記法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ウッドの記法のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのウッドの記法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS