量子力学 古典力学との関係

量子力学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/13 16:11 UTC 版)

古典力学との関係

相違点

量子力学における、古典力学相対性理論ニュートン力学)や古典的な電磁気学との大きな違いとして、不確定性原理相補性原理が挙げられる。観測行為とそれによって記述される物体状態の取り扱いや、それによって要求される確率的な現象の記述は、古典論にはない相違である。事象が確率的にのみ記述されるということは、ニュートン力学などで成り立っていたような「強い意味での因果律」が成り立たないことを意味する。より詳細に言えば、量子力学において成り立つ因果律とは、シュレーディンガー方程式によって記述される波動関数の時間的変化が因果的であることをいう[12]。量子力学では粒子が「波」として記述される一方で、電波のような電磁波(波としての性質をもちろん示す)にもまた粒子としての特徴も示されている(光量子仮説[13]。一般に観測に際しては、粒子性と波動性は同時には現れず、粒子的な振る舞いをみた場合には波動的な性質は失われ、逆に波動的な振る舞いをみる場合には粒子的な性質は失われている。

量子力学の応用例として古典論の未解決問題を明らかにした事例としては、原子の安定性や大きさの一様性、黒体放射におけるプランクの法則の説明[14]や、多原子分子からなる気体比熱容量の決定[15]などが挙げられる。

古典対応

古典力学は、巨視的な極限をとった際の量子力学の近似理論であり、たとえば以下のような量子力学基礎方程式の近似によって古典論との対応関係がみられている。

  1. いくつかの有力な模型で、プランク定数を 0 とみなせば古典力学に等価になる
  2. シュレーディンガー方程式期待値を取ることで、運動方程式が得られる
  3. 一方、反対に古典力学における物理量量子化することで量子力学が得られる
ボーアの対応原理
ボーアの対応原理により、古典力学は「プランク定数が充分小さな場合の量子力学の極限」として位置付けられている。
エーレンフェストの定理
ポテンシャルの空間微分(古典的にはに対応するもの)の空間的な変化がゆっくりで、波動関数の広がっている範囲で一定と近似できるならば、シュレーディンガー方程式期待値を取ることで運動方程式が得られる。すなわち、位置の期待値と運動量の期待値が古典力学における運動方程式であるハミルトン方程式を満たす。

注釈

  1. ^ 本記事名である量子力学は、ここで述べた狭義の「量子力学」と場の量子論を双方を含む広義のものである。狭義の「量子力学」を区別する為にここでは「」を付けて「量子力学」と表記した。

出典

  1. ^ 内井 2007, p. 1.
  2. ^ a b 石川 2011, p. i.
  3. ^ 松村 et al. 2014.
  4. ^ 山田 2003, pp. 6–7.
  5. ^ NetAdvance Inc. 『ジャパンナレッジ』 「量子力学」の項、2014年、NetAdvance Inc.。
  6. ^ a b 山田 2003, p. 7.
  7. ^ 柴田 et al. 2013.
  8. ^ 村上 2006.
  9. ^ 筒井 2002, p. 5.
  10. ^ a b 清水 2004.
  11. ^ 伏見康治「確率論及統計論」第IX.章量子統計力学 76節 量子力学の骨組 p.435 http://ebsa.ism.ac.jp/ebooks/ebook/204
  12. ^ 江沢 2002, p. 83-84; 107-108, §5.4 量子力学における因果律; §6.2 状態.
  13. ^ 朝永 1981, pp. 213–224.
  14. ^ 田崎 2008, pp. 233–268, 7. 電磁場と黒体輻射.
  15. ^ 田崎 2008, pp. 185–195, 5-7 二原子分子理想気体の熱容量.
  16. ^ 全卓樹「量子力学と現代の思潮」『現代思想』、青土社、2020年2月、122-131頁。 
  17. ^ a b J.v.ノイマン『量子力学の数学的基礎』みすず書房、1957年、p332-335
  18. ^ ウルフ 1991, pp. 290–294.
  19. ^ ペンローズ 1994.
  20. ^ Planck 1900.
  21. ^ a b 高野 1981, p. 183.
  22. ^ 矢沢サイエンスオフィス 1998, pp. 64–81.
  23. ^ 山本 1999, pp. 356–359, 解説.
  24. ^ 都築 1995, pp. 134–135.
  25. ^ 山本 1999, pp. 221–229, 365–366, 原子核物理学における認識論上の諸問題をめぐるアインシュタインとの討論; 解説.
  26. ^ 山本 1999, pp. 365–402, 解説.
  27. ^ 山本 1999, pp. 254–257, 381–387, 原子核物理学における認識論上の諸問題をめぐるアインシュタインとの討論; 解説.
  28. ^ 江沢 2002, pp. 69–71, §5.1 電子波の干渉.
  29. ^ Rutherford 1911.
  30. ^ 江沢 2002, pp. 33–35, §2.2 原子の安定性.
  31. ^ 砂川 1987, pp. 307–311, 第7章 §3 点電荷による電磁波の放射とその反作用.
  32. ^ 江沢 2002, pp. 41–42, §3.2 ボーアの原子構造論.
  33. ^ 高林 2010, pp. 90–93, §4.2 量子条件とゾンマーフェルトの理論.
  34. ^ 江沢 2002, pp. 52–54, §3.5 アインシュタインの遷移確率.
  35. ^ 山本 1999, pp. 215–217, 13. 原子物理学における認識論上の諸問題をめぐるアインシュタインとの討論.
  36. ^ 高林 2010, pp. 132–133, §5.2 スピンと排他律.
  37. ^ 高林 2010, pp. 133–134, §5.2 スピンと排他律.
  38. ^ 高林 2010, p. 134, §5.2 スピンと排他律.
  39. ^ 高林 2010, pp. 134–135, §5.2 スピンと排他律.
  40. ^ 高林 2010, pp. 135–136, §5.2 スピンと排他律.
  41. ^ 高林 2010, p. 93, §4.2 量子条件とゾンマーフェルトの理論.
  42. ^ 山本 1999, pp. 38–41, 352–354, 1. 量子仮説と原子理論の最近の発展; 解説.
  43. ^ 江沢 2002, pp. 56–59, §4.1 シュレーディンガーの波動方程式.
  44. ^ 山本 1999, pp. 352–354, 解説.
  45. ^ 山本 1999, p. 47, 1. 量子仮説と原子理論の最近の発展.






量子力学と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「量子力学」の関連用語

量子力学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



量子力学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの量子力学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS