帰納極限 帰納極限の概要

帰納極限

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/02/15 08:32 UTC 版)

厳密な定義

代数系の帰納極限

本節では、対象はある決まった代数的構造(例えばあるいは適当に固定された環上の加群多元環など)をもつ集合とする。このとき準同型は、考えている代数系におけるものを考えることにする。

まず、対象と射(準同型)のなす直系または順系 (direct system) あるいは帰納系 (inductive system) と呼ばれるものの定義から始める。⟨I, ≤⟩ を有向集合とし、{Ai | iI} を I で添字付けられた対象の族、fij: AiAj (ij) を準同型の族として、以下の条件

  1. fiiAi の恒等写像であり、
  2. 任意の ijk に対して fik = fjkfij が成立する。

が満たされるとき、対、⟨Ai, fij⟩ は I 上の帰納系と呼ばれる。

帰納系 ⟨Ai, fij⟩ の帰納極限 A の台集合は、Ai直和集合の適当な同値関係 ∼ による商集合

が全ての i, j について可換になる。帰納系 ⟨Xi, fij⟩ が既知であるとき、その帰納極限 X はしばしば

と書かれる。

前節の場合と異なり、任意の圏においては直極限が存在しないこともありうるが、しかし存在するならば強い意味で一意的である。すなわち、直極限 X と別の直極限 X′ が与えられれば、同型射 X′ → X で全ての標準射と可換になるものが一意的に存在する。

C における直系は、函手の言葉で記述することもできる。任意の半順序集合 ⟨I, ≤⟩ は「ijij」として定義される射の集合をもつ小さい圏と見なすことができるから、I 上の直系とは共変函手 IC に他ならない。

一般の定義

IC を圏とする。C の固定された対象 X に対して cX: IC を定値函手とする。任意の函手 F: IC に対して、函手

を各 X ∈ ob(C) に F から cX への自然変換の全体のなす集合 Hom(F, cX) を対応させるものとする。表現可能ならば、C における表現対象を F の直極限と呼び、やはり と書く。

Cアーベル圏ならば任意個(無限個でもよい)の対象の直和が存在する(グロタンディークの公理 AB3)から、 は任意の函手 F: IC に対して表現可能であり、

はアーベル圏の右完全加法的函手である。

  • Ai を長さiの有限数列全体からなる集合、fij (ij) を数列の後ろに0をj-i項付け加える写像とすると、その帰納極限は、有限項を除いて0であるような数列全体の集合となる。
  • 集合 M の部分集合族 Mi は包含関係によって半順序集合となる。この族が直系となるならば、その帰納極限は単に和集合 によって与えられる。同様のことは、ある群の部分群がなす直系や、ある環の部分環がなす直系についても成立する。
  • 添字集合 I が有向集合で最大元 m を持つならば、そのような任意の直系の直極限はXm に同型であり、標準射 φm: XmX は同型となる。
  • p素数とすると、群の族 Z/pnZ および p を掛けることで誘導される準同型の族 Z/pnZZ/pn+1Z での組は帰納系を成す。この帰納系の帰納極限は、p の適当な冪を位数とするような 1 の冪根の全体からなる。これをプリューファー群 Z(p) という。
  • F位相空間 X 上の C-値とする。X の点 x を固定して、x の開近傍の全体は包含関係を逆にする順序によって(つまり UVUV とおいて)有向半順序集合を成す。このとき、r を制限写像とする直系 (F(U), rU,V) が得られ、この系の直極限は x における F Fx と呼ばれる。x の各近傍 U に対して標準射 F(U) → FxFU 上の切断 s を茎 Fx の元 sx へ対応させる。元 sx は切断 sx におけると呼ばれる。
  • 位相空間の圏における直極限は、台集合に対する単に集合としての直極限を取ったものを台として、終位相を入れたものをいう。
  • 直極限と逆極限の間には
    を通じた相互関係がある。
  • 列 {An, φn} で AnC*-環、φn: AnAn+1 は *-準同型とする。直極限構成の C*-類似は上述の普遍性を満足する C*-環によって与えられる。



「帰納極限」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「帰納極限」の関連用語











帰納極限のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



帰納極限のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの帰納極限 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS