ミセル ミセルの概要

ミセル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/28 09:36 UTC 版)

ナビゲーションに移動 検索に移動
ミセル
IUPACの定義(翻訳)
ミセル コロイドサイズの粒子で、それが形成される溶液中で分子やイオンと平衡状態で存在するもの。[1][2]
ミセル (ポリマー) 液体中で形成される両親媒性の「高分子」から構成され、一般的には親媒性ブロックと疎溶媒性ブロックから作られた両親媒性のジブロック共重合体またはトリブロック共重合体からなる、組織的な自己集合体。
注記1 両親媒性の挙動は、水と有機溶媒、または2つの有機溶媒の間で観察されることがある。
注記2 高分子ミセルは、石鹸ミセル(0.0001 to 0.001 mol/L)や界面活性剤ミセルに比べて臨界ミセル濃度(CMC)ははるかに低いが、それでもユニマーと呼ぶ孤立した高分子と平衡状態にある。そのため、ミセルの形成と安定性は濃度に依存する。[3]
水溶液中のリン脂質によって形成されうる構造の断面図。この図とは異なるが、2本鎖脂質をこの形状に適合させることは難しいため、ミセルは通常、単鎖脂質によって形成される。
リン脂質水溶液中で形成するミセルの模式図

この相 (そう)英語版は、二重層における単鎖尾部脂質パッキング挙動英語版に起因して生じる。脂質頭部基の水和により分子に強いられる頭部基あたりの面積を収容しながら、二重層の内部の全容積を満たすことが困難であるため、ミセルが形成される。このようなミセルは、順相ミセルnormal-phase micelle)または水中油型ミセル(oil-in-water micelle)と呼ばれる。逆相ミセルinverse/reverse micelle)または油中水型ミセル(water-in-oil micelle)は、中心部に頭部基があり、尾部が反対方向に伸びている。

ミセルの形状はほぼ球形である。その他にも、楕円体、円柱、二重層英語版などの形状を含む相も可能である。ミセルの形状や大きさは、その界面活性剤の分子の分子幾何構造と、界面活性剤の濃度、温度pHイオン強度などの溶液条件の関数である。ミセルを形成するプロセスはミセル化(micellisation)と呼ばれ、多くの脂質多型性英語版に応じた相挙動英語版の一部を形成する[5]

歴史

石鹸水が洗剤として機能することは、何世紀も前から認識されていた。しかし、このような溶液の構造が科学的に研究されるようになったのは、20世紀の初めになってからのことである。この分野の先駆的な研究は、ブリストル大学ジェームズ・ウィリアム・マクベインによってなされた。1913年、彼はパルミチン酸ナトリウム溶液の優れた電気伝導性を説明するために、早くも「コロイドイオン(colloidal ions)」の存在を仮定していた[6]。この移動性が高い、自然発生的に形成されたクラスターは「ミセル」と呼ばれるようになり、生物学から借用されたこの用語は、G・S・ハートリーの古典的な著書『パラフィン鎖塩:ミセル形成の研究(Paraffin Chain Salts: A Study in Micelle Formation)』で一般化された[7]。ミセルという用語は、19世紀の科学文献で、ラテン語の mica(粒子)に由来する指小辞として、「小さな粒子(tiny particle)」という新しい語を伝えるために作られた[8]

溶媒和

系内に存在するがミセルの一部ではない個々の界面活性剤分子は「モノマーmonomer)」と呼ばれる。ミセルは分子集合体英語版を表しており、個々の構成要素は、周囲の媒質中にある同種のモノマーと熱力学的に平衡状態にある。水中では、界面活性剤がモノマーとして存在するかミセルの一部として存在するかに関わらず、界面活性剤分子の親水性「頭部」は常に溶媒と接触している。しかし、界面活性剤分子の親油性「尾部」は、ミセルの一部になることで水との接触が少なくなる。これが、ミセル形成のためのエネルギー的な駆動力の基礎をなしている。ミセル内では、いくつかの界面活性剤分子の疎水性尾部が集合して油脂状のコアとなり、水と接触しない最も安定した形態をなす。対して界面活性剤のモノマーは、水分子が水素結合によって結びついて作られたケージ(籠(かご)。溶媒和殻という)で囲まれている。この水ケージはクラスレートに類似したのような結晶構造を持っており、疎水性効果に従って特徴付けられる。脂質の溶解度は、疎水性効果に従った水構造の秩序化による不利なエントロピーの寄与によって決定される。

イオン性界面活性剤で構成されるミセルでは、溶液中で取り囲むイオン(対イオン(つい)英語版とよぶ)との間で静電的な引力を生じる。最も近接した対イオンは、帯電したミセルを部分的に遮蔽するが(最大92%)、ミセルの帯電の影響は、ミセルからかなり離れた周囲にある溶媒の構造に影響を与える。イオン性ミセル(ionic micelles)は、電気伝導率など、混合液の多くの特性に影響を与える。ミセルを含むコロイドにを加えると、静電相互作用の強度が低下し、より大きなイオン性ミセルの形成をもたらす[9]。より正確には、これは系の水和における実効電荷の観点から見たものである。


  1. ^ MacNaugdoesht, Alan D., ed (1997). Compendium of Chemical Terminology: IUPAC Recommendations (2nd ed.). Oxford: Blackwell Science. ISBN 978-0865426849 
  2. ^ Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, himanshu G.; Kubisa, Przemyslaw; Meisel, Ingrid et al. (2011). “Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)”. Pure and Applied Chemistry 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03. 
  3. ^ Vert, Michel; Doi, Yoshiharu; Hellwich, Karl-Heinz; Hess, Michael; Hodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schué, François (2012). “Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)”. Pure and Applied Chemistry 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. 
  4. ^ Doubtnut. “What are Associated Colloids ? Given an example.” (英語). doubtnut. 2021年2月26日閲覧。
  5. ^ I.W.Hamley "Introduction to Soft Matter" (John Wiley, 2007)
  6. ^ McBain, J.W., Trans. Faraday Soc. 1913, 9, 99
  7. ^ Hartley, G.S. (1936) Aqueous Solutions of Paraffin Chain Salts, A Study in Micelle Formation, Hermann et Cie, Paris
  8. ^ Micelle”. Merriam-Webster Dictionary. 2018年9月29日閲覧。
  9. ^ Turro, Nicholas J.; Yekta, Ahmad (1978). “Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles”. Journal of the American Chemical Society 100 (18): 5951–5952. doi:10.1021/ja00486a062. 
  10. ^ Nagarajan, R. (2002). “Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail†”. Langmuir 18: 31–38. doi:10.1021/la010831y. 
  11. ^ Kocak, G.; Tuncer, C.; Bütün, V. (2016-12-20). “pH-Responsive polymers” (英語). Polym. Chem. 8 (1): 144–176. doi:10.1039/c6py01872f. ISSN 1759-9962. 
  12. ^ Hamley, I.W. "Block Copolymers in Solution" (Wiley, 2005)
  13. ^ Zana, Raoul; Marques, Carlos; Johner, Albert (2006-11-16). “Dynamics of micelles of the triblock copolymers poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) in aqueous solution”. Advances in Colloid and Interface Science. Special Issue in Honor of Dr. K. L. Mittal 123–126: 345–351. doi:10.1016/j.cis.2006.05.011. PMID 16854361. 
  14. ^ Nicolai, Taco; Colombani, Olivier; Chassenieux, Christophe (2010). “Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers”. Soft Matter 6 (14): 3111. Bibcode2010SMat....6.3111N. doi:10.1039/b925666k. 
  15. ^ Prescott, R.J. (1983). “Communications to the editor”. Journal of Psychosomatic Research 27 (4): 327–329. doi:10.1016/0022-3999(83)90056-9. PMID 6620210. 
  16. ^ Zhang, L; Eisenberg, A (1995). “Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers”. Science 268 (5218): 1728–31. Bibcode1995Sci...268.1728Z. doi:10.1126/science.268.5218.1728. PMID 17834990. https://semanticscholar.org/paper/6602f3a8d72b984add1b435b63fce77d1aa3a0c4. 
  17. ^ Zhu, Jintao; Hayward, Ryan C. (2008-06-01). “Spontaneous Generation of Amphiphilic Block Copolymer Micelles with Multiple Morphologies through Interfacial Instabilities”. Journal of the American Chemical Society 130 (23): 7496–7502. doi:10.1021/ja801268e. PMID 18479130. 
  18. ^ D'Addio, Suzanne M.; Saad, Walid; Ansell, Steven M.; Squiers, John J.; Adamson, Douglas H.; Herrera-Alonso, Margarita; Wohl, Adam R.; Hoye, Thomas R. et al. (2012-08-20). “Effects of block copolymer properties on nanocarrier protection from in vivo clearance”. Journal of Controlled Release 162 (1): 208–217. doi:10.1016/j.jconrel.2012.06.020. PMC 3416956. PMID 22732478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416956/. 
  19. ^ Strubbe, Filip; Neyts, Kristiaan (2017-10-19). “Charge transport by inverse micelles in non-polar media” (英語). Journal of Physics: Condensed Matter 29 (45): 453003. doi:10.1088/1361-648x/aa8bf6. ISSN 0953-8984. PMID 28895874. https://doi.org/10.1088/1361-648X/aa8bf6. 
  20. ^ a b Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian (2015). “Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions”. Nature Communications 6: 8127. Bibcode2015NatCo...6.8127L. doi:10.1038/ncomms9127. PMC 4569713. PMID 26337527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569713/. 
  21. ^ Gould, Oliver E.C.; Qiu, Huibin; Lunn, David J.; Rowden, John; Harniman, Robert L.; Hudson, Zachary M.; Winnik, Mitchell A.; Miles, Mervyn J. et al. (2015). “Transformation and patterning of supermicelles using dynamic holographic assembly”. Nature Communications 6: 10009. Bibcode2015NatCo...610009G. doi:10.1038/ncomms10009. PMC 4686664. PMID 26627644. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686664/. 
  22. ^ Paprocki, Daniel; Madej, Arleta; Koszelewski, Dominik; Brodzka, Anna; Ostaszewski, Ryszard (2018-10-22). “Multicomponent Reactions Accelerated by Aqueous Micelles”. Frontiers in Chemistry (Frontiers Media SA) 6: 502. doi:10.3389/fchem.2018.00502. ISSN 2296-2646. PMC 6204348. PMID 30406083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204348/. 
  23. ^ Lipshutz, Bruce H.; Petersen, Tue B.; Abela, Alexander R. (2008-03-12). “Room-Temperature Suzuki−Miyaura Couplings in Water Facilitated by Nonionic Amphiphiles”. Organic Letters (American Chemical Society (ACS)) 10 (7): 1333–1336. doi:10.1021/ol702714y. ISSN 1523-7060. PMID 18335944. 
  24. ^ Macquarrie, Duncan J. (2009-05-27). “Organically Modified Micelle Templated Silicas in Green Chemistry”. Topics in Catalysis (Springer Science and Business Media LLC) 52 (12): 1640–1650. doi:10.1007/s11244-009-9301-6. ISSN 1022-5528. 
  25. ^ Ji, Yangyuan; Niu, Junfeng; Fang, Yuhang; Tan Nou, Alliyan; Warsinger, David M (2021). “Micelles inhibit electro-oxidation degradation of nonylphenol ethoxylates”. Chemical Engineering Journal (Elsevier BV) 430: 133167. doi:10.1016/j.cej.2021.133167. ISSN 1385-8947. 
  26. ^ Chen, Xi; An, Yingli; Zhao, Dongyun; He, Zhenping; Zhang, Yan; Cheng, Jing; Shi, Linqi (August 2008). “Core−Shell−Corona Au−Micelle Composites with a Tunable Smart Hybrid Shell”. Langmuir 24 (15): 8198–8204. doi:10.1021/la800244g. PMID 18576675. 


「ミセル」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ミセル」の関連用語

ミセルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ミセルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのミセル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS