バンドギャップ バンドギャップの概要

バンドギャップ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/16 09:21 UTC 版)

ナビゲーションに移動 検索に移動

ただし半導体絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。

E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。

半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egがバンドギャップ。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。
金属、および半導体絶縁体バンド構造の簡単な模式図(k空間無視)

バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。

半導体におけるバンドギャップ

電子がバンドギャップを越えて価電子帯伝導帯の間を遷移するには、バンドギャップ幅以上の大きさのエネルギー()を吸収または放出する必要がある。半導体素子においてはこのようなバンドギャップ周辺での電子の遷移を制御することによって、様々な機能を実現している。

バンドギャップはE-k空間上におけるバンド間の隙間であるため、バンドギャップを越えて遷移するには、エネルギー(E)だけでなく、波数(k)も合わせる必要がある。波数が変化しない遷移(直接遷移)ならばだけで遷移可能である。波数が異なる遷移(間接遷移)の場合、格子振動との相互作用を介する遷移となる。

バンドギャップが大きい物質は光子によって電子が励起されにくくそのまま光子が通過するため、可視光波長域のエネルギー以上に大きなバンドギャップを持つ物質は透明になる。

バンドギャップの大きさ(禁制帯幅)を表す単位としては通常、電子ボルト(eV)が用いられる。例えばシリコンのバンドギャップは約1.2 eV、ヒ化ガリウムでは約1.4 eV、ワイドギャップ半導体窒化ガリウムでは約3.4 eVである。物質内部で伝導に寄与する全電子のポテンシャルエネルギーが1eV変化することは、物質全体の電位が1 V変化することに相当する。バンドギャップの大きさは、PN接合などを動作させる時に必要な印加電圧に大きく影響する。たとえばシリコンのダイオードは通常0.6~0.7 V程度で動作するが、窒化ガリウムの青色発光ダイオードを動作させるには、3 Vを越える電圧を供給する必要がある(PN接合の項も参照)。

類義語

似た用語としてエネルギーギャップ(energy gap)がある。固体電子論(バンド理論)では、バンド構造におけるバンドとバンドの間の隙間を指す(広義のバンドギャップとほぼ同じ意味合いとなる)が、それ以外の意味をもつ場合がある(例:超伝導におけるエネルギーギャップなど)。


  1. ^ H. Unlu (1992). “A Thermodynamic Model for Determining Pressure and Temperature Effects on the Bandgap Energies and other Properties of some Semiconductors”. Solid State Electronics 35: 1343–1352. doi:10.1016/0038-1101(92)90170-H. 
  2. ^ Temperature dependence of the energy bandgap
  3. ^ a b c d e f g h i j k l m n o p q r s t Streetman, Ben G.; Sanjay Banerjee (2000). Solid State electronic Devices (5th ed.). New Jersey: Prentice Hall. p. 524. ISBN 0-13-025538-6 
  4. ^ Wu, J. (2002). “Unusual properties of the fundamental band gap of InN”. Applied Physics Letters 80: 3967. doi:10.1063/1.1482786. 
  5. ^ Madelung, Otfried (1996). Semiconductors - Basic Data (2nd rev. ed.). Springer-Verlag. ISBN 3-540-60883-4 
  6. ^ Elliott, R. J. (1961). “Symmetry of Excitons in Cu2O”. Physical Review 124: 340. doi:10.1103/PhysRev.124.340. 
  7. ^ Baumeister, P.W. (1961). “Optical Absorption of Cuprous Oxide”. Physical Review 121. 


「バンドギャップ」の続きの解説一覧




バンドギャップと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「バンドギャップ」の関連用語

バンドギャップのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



バンドギャップのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのバンドギャップ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS