代数的集合とは? わかりやすく解説

代数多様体

(代数的集合 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/04 13:25 UTC 版)

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。

本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り k代数的閉体であると仮定する( k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。

概説

最も初等的に定義される代数多様体は、アフィン代数多様体である。代数的閉体 k 上の n 次元のアフィン空間


代数的集合

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/03/12 08:25 UTC 版)

多変数多項式」の記事における「代数的集合」の解説

詳細は「代数的集合」を参照 k を代数閉体とする。k-係数多項式 f(X1, …, Xn) の零点集合英語版)は f(x1, …, xn) = 0 を満たす kn の点 (x1, …, xn) 全体の成す集合を言う。kn における代数的集合とは k[X1, …, Xn] に属す多項式からなる族の零点集合交わりを言う。多項式環 k[X1, …, Xn] はネーターであるから、常に多項式有限に対して考えれば十分である。代数的集合は代数幾何学において基本的である。

※この「代数的集合」の解説は、「多変数多項式」の解説の一部です。
「代数的集合」を含む「多変数多項式」の記事については、「多変数多項式」の概要を参照ください。

ウィキペディア小見出し辞書の「代数的集合」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「代数的集合」の関連用語











代数的集合のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



代数的集合のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの代数多様体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの多変数多項式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS