Center (algebra)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Center (algebra)の意味・解説 

中心 (代数学)

(Center (algebra) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2015/03/19 09:14 UTC 版)

数学の分野である代数学において、多元環などの中心 (: center, : Zentrum) は考えている構造の部分集合であって、乗法に関してすべての元と交換する元全体からなる。

群の中心

を群とすると、その中心は集合

である。

性質

の中心は部分群である。なぜならば、 の元とすると、任意の に対して、

なので、 を中心に入る。同様にして、 も中心に入る。

.

群の単位元 は常に中心に入る。.

中心はアーベル群正規部分群である。特性部分群英語版でもある、つまりすべての自己同型で不変である。中心は強特性 (strictly characteristic) でさえある、つまりすべての全射自己準同型で不変である。 がアーベル群であることと は同値である。

中心はちょうど、 による共役、すなわち が恒等写像であるような、 の元 からなる。したがって中心を中心化群の特別な場合としても定義できる。 である。

  • 3次対称群英語版 の中心は単位元 のみからなる、なぜならば:
  • 二面体群 は正方形が全く動かないような平面の動きからなる。それは正方形の中心を中心とする角度 0°, 90°, 180°, 270°の回転と、2つの対角線および正方形の平行する辺の中点を通る2つの直線による4つの鏡映からなる。この群の中心はちょうど 0°と 180°の2つの回転からなる。
  • 実数を成分に持つ可逆 n×n-行列の乗法群の中心は単位行列の(0 でない)実数倍からなる。

環の中心

R中心は環の元であってすべての元と交換するものからなる。

中心 R可換部分環である。環が中心と等しいことと可換であることは同値である。

結合多元環の中心

結合多元環 A中心は可換な部分多元環

である。多元環がその中心と等しいことと可換であることは同値である。

リー代数の中心

定義

リー代数 中心は(可換な)イデアル

である。ただし はブラケット積、つまり の積を表す。リー代数がその中心に等しいことと可換であることは同値である。

.

参考文献

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Center (algebra)」の関連用語

Center (algebra)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Center (algebra)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの中心 (代数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS