Theorema Egregium
Theorema Egregium(ラテン語。音訳:テオーレーマ・エーグレギウム[注 1]。直訳:卓越した定理[注 2])はカール・フリードリヒ・ガウスにより証明された定理で、曲面のガウス曲率が曲面の内在的な量(リーマン計量)のみで書ける事を主張する。
日本語では
などと訳される事もあるが、egregiumには「驚異の」という意味はない[注 2]。英語では「Remarkable Theorem」(注目すべき定理)と意訳する事もある[12][13][14]。
語源
「Theorema Egregium」という語はこの定理を示したガウスの原論文から来ている:
Formula itaque art. praec, sponte perducit ad egregium
- THEOREMA. Si superficies curva in quamcunque aliam superficiem explicatur, mensura curuaturae in singulis punctis inuariata manet. — Carl Friedrich Gauss、Disquisitiones generales circa superficies curvas[15]
したがって前項の公式それ自身が導く、卓越した[注 2][注 3]
- 定理. もし曲面が他の任意の曲面にどのように発展したとしても、各点における曲率の大きさは不変である。 — カール・フリードリヒ・ガウス、曲面の一般的考察[16][17]
概要

Mを3次元ユークリッド空間 したがって、 Theorema Egregiumを使うと、地球の地図を書くとき距離を歪ませない正確な地図は書けない事を示す事ができる[注 4][注 5]。実際、もし正確な地図が書けるなら、地球と地図(すなわち球面と平面)の距離構造は同一なので、Theorema Egregiumより両者のガウス曲率は等しくなければならないが、球面のガウス曲率は半径をRとすると1/R2であり、平面のガウス曲率は0である事が知られているので、これは矛盾である。
さらにアルベルト・アインシュタインは、重力の座標変換則がリーマン多様体のそれとよく似ている事に着目し、宇宙をリーマン多様体の類似物(擬リーマン多様体)と見なすことで一般相対性理論を確立した。
なお、ガウスがTheorema Egregiumなどの曲面論(ガウスの曲面論)を研究したきっかけは、国家の測量を依頼されたためであった。
ベルンハルト・リーマンはTheorema Egregiumに着目する事により、「外の空間」なしのn次元曲面、すなわちn次元リーマン多様体を定義し、これが今日の微分幾何学の研究の嚆矢となった。
厳密な定式化
古典的な定式化
Theorema Egregiumは以下のように定式化できる:
定理 ―
Weblioに収録されているすべての辞書からTheorema Egregiumを検索する場合は、下記のリンクをクリックしてください。

- Theorema Egregiumのページへのリンク