階数_(線型代数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 階数_(線型代数学)の意味・解説 

行列の階数

(階数_(線型代数学) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/07/01 07:21 UTC 版)

線型代数学における行列階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。

例えば、行列 A の階数 rank(A)(あるいは rk(A) または丸括弧を落として rank A)は、A列空間(列ベクトルの張るベクトル空間)の次元[1]に等しく、また A行空間の次元[2]とも等しい。行列の階数は、対応する線型写像の階数である。

行列の階数の概念はジェームス・ジョセフ・シルベスターが考えた[3]

定義

任意の行列 A について、以下はいずれも同値である。

  • A の列ベクトルの線型独立なものの最大個数(A の列空間の次元)
  • A の行ベクトルの線型独立なものの最大個数(A の行空間の次元)
  • A基本変形を施して階段行列 B を得たとする。このときの B の零ベクトルでない行(または列)の個数(階段の段数とも表現される)
  • 表現行列 A線型写像の像空間の次元。詳しくは#線型写像の階数を参照。
  • A の 0 でないような小行列式の最大サイズ
  • A特異値の数

文献により、上記の条件のいずれかを以って行列 A の階数は定義される。

注意

いま A の列空間の次元を「列階数」、行空間の次元を「行階数」と呼べば、線型代数学における基本的な結果の一つとして、列階数と行階数は常に一致するという事実が成立するから、それらを単に A の階数と呼ぶことができる。これについて、Wardlaw (2005)[4] はベクトルの線型結合の基本性質に基づく四文証明を与えた(これは任意の上で有効である)。また、Mackiw (1995) [2]実数体上の行列に対して有効な、直交性を用いたエレガントな別証明を与えている。両証明とも教科書 Banerjee & Roy (2014) [5]に出ている。

性質

Am × n 行列とする。また、 f を表現行列 A の線型写像とする。

一般の体上

  • m × n 行列の階数は非負整数で、m, n の何れも超えない。すなわち rank(A) ≤ min(m, n) が成り立つ。特に rank(A) = min(m, n) のとき、A最大階数full rank; フルランク; 充足階数、完全階数)を持つとかフルランク行列などといい、さもなくばA階数落ち英語版 (rank deficient; 階数不足) であるという。
  • A零行列のときかつその時に限り rank(A) = 0.
  • f単射となるための必要十分条件は、rank(A) = n(これを A列充足階数を持つという)となることである。
  • f全射となるための必要十分条件は、rank(A) = m となる(A行充足階数を持つ)ことである。
  • A正方行列(つまり m = n)のとき、A正則であるための必要十分条件は、rank(A) = nA が充足階数)となることである。
  • B を任意の n × k 行列として rank(AB) ≤ min(rank(A), rank(B)) が成り立つ。
    • B が行充足階数 n × k 行列ならば rank(AB) = rank(A) が成り立つ。
    • C が列充足階数 l × m 行列ならば rank(CA) = rank(A) が成り立つ。
  • rank(A) = r となるための必要十分条件は、m × m 正則行列 Xn × n 正則行列 Y が存在して
    が成立することである。ただし Irr × r 単位行列である。右辺の行列は A階数標準形と呼ばれる。
  • rank(A) = rank(A)A転置行列
  • 階数・退化次数の定理が成立
シルベスターの階数不等式
m × n 行列 An × k 行列 B に対し
が成り立つ。[注釈 1]
フロベニウスの不等式
行列の積 A, ABC, BC がいずれも定義されるとき、
が成り立つ。[注釈 2]
劣加法性
A, B は同じ型の行列として
が成り立つ。この帰結として、階数 k の行列は階数 1 の行列 k 個の和に書くことができ、また k 個より少ない階数 1-行列の和には書けない。

特定の体上

  • A実数体上の行列であるとき、A の階数は対応するグラム行列の階数に等しい。すなわち、実行列 A に対し
    が成り立つ。これは各々の核空間が等しいことを見れば示される。グラム行列の核は AAx = 0 となるベクトル x からなる。このときさらに 0 = xAAx = |Ax|2 も成り立つ[6]
  • A複素数体上の行列であるとき、A の複素共軛行列を A, 共軛転置行列A* と書けば、
    が成り立つ。

階数の計算

例えば、行列

は、基本変形を行うことによって

と書けるから、M の階数は rank M = 2 である。実際、[第 2 行] = [第 1 行] + [第 3 行] であるから、2 行目の行ベクトルは線型独立でない。ここで、1 行目と 3行目は明らかに線型独立であるから、rank M = 2 である。

浮動小数点を用いたコンピューター上の数値計算においては、この基本変形を用いたりLU分解を用いることで階数を求める方法は、精度が落ちることもあり用いられない。替わりに、特異値分解(SVD)やQR分解を用いて求められる。

線型写像の階数

V, W をベクトル空間とし、線型写像 f: VW が与えられたとき、f の像 f(V) の次元を線型写像 f階数と呼び、rk frank f などで表す。VW は一般に無限次元であっても、像の次元 dim f(V) が有限であれば線型写像の階数の概念は意味を持つ。とくに階数有限なる線型写像にはトレースが定義できて、古典群の表現論などで重要な役割を果たす。

VW が有限次元ならば、行列表現によって f は表現行列 Af の共軛類が対応する。このとき、線型写像の階数と行列の階数との間には rank f = rank Af という関係が成り立つが、行列の階数が正則行列を掛けることに関して不変であることから、この等式の成立は表現行列 Af のとり方に依らない。

ベクトル空間 V, W に対して Vn 次元とすれば、線型写像 f: VW の階数は n 以下である。実際に、rank f = n となるとき、線型写像 f非退化(ひたいか、non-degenerate, full rank)であるという。そうでないときには、像 f(V)f0 へ写される元の分だけ「つぶれている」と考えられ、線型写像 f

の次元 dim ker ff退化次数と呼ぶ。f の退化次数を nl fnull f などで表すことがある。次の公式

が成立し、階数と退化次数の関係式あるいは簡単に階数・退化次数公式などと呼ばれる。

脚注

注釈

  1. ^ 証明: 階数–退化次数定理を不等式
    に適用すればよい
  2. ^ 証明: 写像
    は矛盾なく定義されて、単射である。したがって退化次数に対する不等式が得られるが、それを階数–退化次数定理で階数に関するものへ読み替えればよい。あるいは別法として、任意の部分線型空間 M に対し dim(AM) ≤ dim(M) が成り立つから、これを BC の像の B の像における(直交)補空間の定める部分空間(次元は rank(B) − rank(BC))を M として適用する。その A による像は次元 rank(AB) – rank(ABC) である。

出典

  1. ^ Bourbaki, Algebra, ch. II, §10.12, p. 359
  2. ^ a b Mackiw, G. (1995), “A Note on the Equality of the Column and Row Rank of a Matrix”, Mathematics Magazine 68 (4) 
  3. ^ 黒木哲徳『なっとくする数学記号』講談社〈ブルーバックス〉、2021年、160頁。ISBN 9784065225509 
  4. ^ Wardlaw, William P. (2005), “Row Rank Equals Column Rank”, Mathematics Magazine 78 (4), doi:10.1080/0025570X.2005.11953349 
  5. ^ Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN 978-1420095388 
  6. ^ Mirsky, Leonid (1955). An introduction to linear algebra. Dover Publications. ISBN 978-0-486-66434-7 

外部リンク


「階数 (線型代数学)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「階数_(線型代数学)」の関連用語

階数_(線型代数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



階数_(線型代数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの行列の階数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS