核磁気共鳴におけるコヒーレンス
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/17 09:39 UTC 版)
「コヒーレンス」の記事における「核磁気共鳴におけるコヒーレンス」の解説
核磁気共鳴では、スピン系の状態をあらわす密度行列のゼロではない非対角成分をコヒーレンスという。ある条件をみたすコヒーレンスだけがNMRでは観測される。コヒーレンスの位相がそろっているとき、コヒーレンスが保たれているという。 コヒーレンスは1個の個体を取り出したのでは何ら意味をなさない概念である。コヒーレンスは横緩和を考える上で重要となる。ベクトルモデルにおけるコヒーレンスとは、横磁化の存在そのものである。 コヒーレンスは共鳴によって作りだされ、緩和によって消失する。コヒーレンスの位相が厳密に制御されている場合には、失われたように見える横磁化は、時間をさかのぼれば回復させることが可能である。コヒーレンスの消失の中で、可逆的なものと非可逆的なものを区別するのがスピンエコーの発想である。スピン系のコヒーレンスは、パルスRF磁場のもつコヒーレンスによって作られる。位相のそろった電磁波はコヒーレンスを持つ。RF磁場によってゼーマン準位の間に遷移が起これば、RF磁場のコヒーレンスがスピンに移り、遷移に対応するゼーマン準位に分布するスピンの間にコヒーレンスがもたらされる。⊿m=0のゼーマン準位のペアに生じたコヒーレンスをゼロ量子コヒーレンスという。⊿m=±1の場合は1量子コヒーレンス、⊿m=±2あるいはそれ以上の隔たりのある場合は多量子コヒーレンスという。多量子コヒーレンスは2個以上のスピンからなる系ではじめて重要になり、密度演算子での取り扱いが必要となる。
※この「核磁気共鳴におけるコヒーレンス」の解説は、「コヒーレンス」の解説の一部です。
「核磁気共鳴におけるコヒーレンス」を含む「コヒーレンス」の記事については、「コヒーレンス」の概要を参照ください。
- 核磁気共鳴におけるコヒーレンスのページへのリンク