振り子の等時性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 振り子の等時性の意味・解説 

振り子

(振り子の等時性 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/09/24 07:55 UTC 版)

振り子
振り子のアニメーション
v:速度ベクトル、a:加速度ベクトル、θ:振り子角度

振り子(ふりこ、: pendulum)とは、空間固定点(支点)から吊るされ、重力の作用により、揺れを繰り返す物体である[1]。支点での摩擦空気抵抗の無い理論的な環境では永久に揺れ続けることが仮定され、初等力学を構成する上で重要な力学的視座を与える。

概要

振り子は時計地震計メトロノーム車体傾斜式車両などに用いられる。英語の pendulum(振り子) は ラテン語の「pendulus」(ぶら下がっている、垂れ下がっている)「pendere」(ぶら下がる、吊る)を語源とする。pendereはpendant(ペンダント)の語源である。

振り子の最も古い用途の一つは後漢張衡が作成した地震計である[2]。17世紀にガリレオにはじまる物理学者らよる観測の結果、等時性が主張されるようになり、時計に使用されるようになった[3]

ガリレオがピサの大聖堂のランプの揺れから振り子の等時性を発見をしたのは1583年であると彼の弟子であり伝記作家でもあるヴィンチェンツォ・ヴィヴィアーニが『新科学対話』において記しているが、これは一般に創作と考えられている[4]。このほか『運動について』では重い物体は軽い物体よりも長い間振動しつづけると主張し[5]、『新科学対話』では鉛とコルクの2つの球を2から2.5mの糸で吊るし同時に手放すとほとんど同じ周期をもっていたと主張した[6]。ガリレオによるこの3つの主張のうち、最初の等時性については理論的には厳密に正しくない事が証明され、また彼による時計の自作は最終的に失敗に終わった[7]。2つ目の重量による振動時間の関係については空気抵抗など経験的に裏付けられるものの、理論的な根拠はなく誤りである。3つめの重力による等加速度運動の主張は重要でニュートンによる力学体系に直接結びつくものである[8]

このほか、1851年には地球の自転現象を立証する目的でレオン・フーコーによる公開実験が行われた(フーコーの振り子)。

等時性を示す装置として、ばね振り子やねじれ振り子などがある。

基本原理

振り子は、重りが左右いずれかの位置にあるとき位置エネルギーを持つ。重力により下に引かれると加速し運動エネルギーとなり、一番下で最高速になる。反対側に揺れるとき減速しつつ再度位置エネルギーとして蓄積され一旦停止する。以後これを繰り返す。

揺れの幅が十分に小さい場合、振り子の揺れの周期は、重りの重さや振幅に関係なく一定であるとみなすことができる。単振り子の場合、周期はひもの重量を考慮しなければ支点から重りの重心までの距離にのみ影響される。これを振り子の等時性[9]という。柱時計などにしばしば見られる物理振り子の場合、剛体の振動は慣性モーメント[10]と剛体全体の重量の影響を受けるため、支点から剛体の重心までの距離とはかならずしも一致しない。物理振り子の振り子の長さは「等価振り子の長さ」と呼ばれる。

一方で揺れの幅が「十分に小さい」とは言えない場合、周期は次第に大きくなることは古くから経験的に知られており、これはしばしば「等時性の破れ[11]」と表現される。

単振り子

単振り子

単振り子は、振り子の運動を考えるためのモデルである。重さが無く伸び縮みしない棒の一端を固定し、他端に質点を取り付け、ひとつの鉛直面内のみを重力の作用で振動すると考える[1]。(振り子が一鉛直面内ではなく球面上を動く場合は「球面振り子」[12]という)。振幅が小さければおもりの運動は単振動とみなすことができ、周期 T は、

単振り子に作用する力

長さ

振幅が大きい場合の単振り子のアニメーション
振れ(振り子の初期角:θ0)が大きいほど周期が長くなっている。

ガリレオの実験報告にも関わらず、単振り子はその振れ幅が大きくなるにつれ振動周期が大きくなる事は経験的に知られており、時計など工学的に利用する際の障害となっていた。この分野で数学的な研究を行った最初の人物と見られているのがクリスティアーン・ホイヘンスであり、1656年頃から59年頃にサイクロイド曲線を利用することで等時性が確保できることに到達した。彼は微分積分学を開発したゴットフリート・ライプニッツの師にあたり、ホイヘンスのサイクロイド振り子とライプニッツの微積分学がどのような関わりであったかは興味深い[14]

等時性の破れを主眼に置き、式の近似を用いない解法を考える。以下では

等価振り子長さl

物理振り子の周期T は次の式で表される[17]。ここでl は等価振り子の長さ、g重力加速度である。

振幅の異なる5つのサイクロイド振り子

単振り子の等時性は先述の通り振幅が大きい場合に破れてしまう。そこで、振幅に依らず厳密に等しい時間で振動させるためには、おもりがどのような曲線に沿えばよいかを問う問題を等時曲線問題と呼ぶ。クリスティアーン・ホイヘンスによりこの問題の答えはサイクロイドであることが導かれた。おもりがサイクロイド曲線に沿うよう作られた振り子は「サイクロイド振り子」と称され、周期 T は振幅に依存することなく、正確に




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「振り子の等時性」の関連用語

振り子の等時性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



振り子の等時性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの振り子 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS