懸垂空間とは? わかりやすく解説

懸垂 (位相幾何学)

(懸垂空間 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/26 15:57 UTC 版)

ナビゲーションに移動 検索に移動

位相幾何学において,位相空間 X懸垂: suspensionSX とは,X単位区間 I = [0, 1]積空間商空間

円の懸垂.もとの空間は青色で,押しつぶされた端点は緑色.

である.したがって,X円柱に引き伸ばされ,そして両端が点に押しつぶされる.X を端点の間に「ぶらさがっている」(suspended) と見る.懸垂を X 上の2つのを base で貼り合わせた英語版もの(あるいは1つの錐の商)とも見られる.

連続写像 f: XY が与えられると,Sf([x, t]) := [f(x), t] によって定義される写像 Sf: SXSY が存在する.これにより S位相空間の圏から自身への関手となる.荒っぽく言えば,S は空間の次元を 1 増やす:それは n ≥ 0 に対して n 次元球面(n + 1) 次元球面に写す.

空間 SXjoin英語版 に同相である,ただし S0 は2点離散空間である.

空間 SX は,下記の約懸垂と区別するために,Xunreduced, unbased, or free suspension と呼ばれることもある.

懸垂はホモトピー群の準同型を構成するのに使うことができ,それにはフロイデンタールの懸垂定理英語版を適用できる.ホモトピー論では,適切な意味で懸垂で保たれる現象は安定ホモトピー論英語版を作る.

約懸垂

X が(x0 を基点に持つ)基点付き空間のとき,ときどきより有用な,懸垂の変種がある.X約懸垂 (reduced suspension, based suspension) ΣX とは,接着空間

である.これは SX をとり,2端点を結ぶ線分 (x0 × I) を一点に押しつぶすことと同値である.ΣX の基点は (x0, 0)同値類である.

X の約懸垂は X単位円 S1 とのスマッシュ積同相である

ことを示すことができる.

CW複体のような行儀のよい英語版空間に対しては,X の約懸垂は通常の懸垂とホモトピー同値である.

Σ基点付き空間の圏から自身への関手を生じる.この関手の重要な性質は,(基点付き)空間 X をそのループ空間英語版 ΩX に送る関手 Ω左随伴であることである.言い換えると,自然に

である,ただし は基点を保つ連続写像全体である.この随伴はデカルト積上の写像をカリー化された形に送るカリー化英語版の形と理解でき,Eckmann–Hilton duality英語版 の例である.これは懸垂と自由ループ空間に対しては成り立たない.

Desuspension

Desuspension英語版 は懸垂の逆である操作である[1]

関連項目

脚注

  1. ^ Wolcott, Luke. “Imagining Negative-Dimensional Space”. forthelukeofmath.com. 2015年6月23日閲覧。

参考文献


懸垂空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/12/23 04:43 UTC 版)

マイヤー・ヴィートリス完全系列」の記事における「懸垂空間」の解説

位相空間 X が別の空間 Y の懸垂 SY のとき、A および B をそれぞれ二重の上点 (top vertex) および下点 (bottom vertex) の X における補集合ととれば、X は共に可縮な A, B の和 A ∪ B として書けて、交わり A ∩ B は Y にホモトピー同値であるからマイヤー・ヴィートリス完全系列により、各 n に対して H ~ n ( S Y ) ≅ H ~ n − 1 ( Y ) {\displaystyle {\tilde {H}}_{n}(SY)\cong {\tilde {H}}_{n-1}(Y)} を得る。図は一次元球面 X を零次元球面 Y の懸垂見たものだが、一般に k-次元球面は (k − 1)-次元球面懸垂になっており、上掲球面ホモロジー群帰納法によって導くことも容易である。

※この「懸垂空間」の解説は、「マイヤー・ヴィートリス完全系列」の解説の一部です。
「懸垂空間」を含む「マイヤー・ヴィートリス完全系列」の記事については、「マイヤー・ヴィートリス完全系列」の概要を参照ください。

ウィキペディア小見出し辞書の「懸垂空間」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

懸垂空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



懸垂空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの懸垂 (位相幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのマイヤー・ヴィートリス完全系列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS