座標を用いない記述
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/11 14:32 UTC 版)
より内在的に述べれば、ベクトル空間 V 上の歪対称線型変換は適当な内積に関して、V 上の二重ベクトル(英語版)(これは単純二重ベクトル(英語版) v ∧ w の和)として定義することができる。その対応は、v* はベクトル v の双対ベクトルとして、写像 v ∧ w ↦ v* ⊗ w − w* ⊗ v により与えられ、直交座標系に関する場合これはちょうど上で述べた意味での通常の歪対称行列に一致する。この特徴付けはベクトル場の回転(これは自然な 2-ベクトル)を無限小回転と解釈することに利用できる(それゆえに「回転」と呼ばれる)。
※この「座標を用いない記述」の解説は、「交代行列」の解説の一部です。
「座標を用いない記述」を含む「交代行列」の記事については、「交代行列」の概要を参照ください。
- 座標を用いない記述のページへのリンク