変態界面前方の炭素の分配
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/13 15:55 UTC 版)
「ベイナイト」の記事における「変態界面前方の炭素の分配」の解説
低い変態温度においては、オーステナイト中の炭素の拡散速度が小さくなるのにも拘わらず、大きい変態速度が得られていることから、炭素の拡散と剪断機構が同時に働いているとは考えがたい。 そこで、剪断説ではまず最初に相界面近傍の炭素を完全に過飽和したオーステナイトがマルテンサイトに変態してから、炭素が拡散してフェライト(マルテンサイト)の炭素濃度がオーステナイトとほぼ同じになると考える。図7にその模式図を示す。ここでは、フェライト中に炭化物を析出するか、残存するオーステナイトに炭素を拡散することで、フェライトの高い炭素濃度が低下することとなる。
※この「変態界面前方の炭素の分配」の解説は、「ベイナイト」の解説の一部です。
「変態界面前方の炭素の分配」を含む「ベイナイト」の記事については、「ベイナイト」の概要を参照ください。
変態界面前方の炭素の分配
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/13 15:55 UTC 版)
「ベイナイト」の記事における「変態界面前方の炭素の分配」の解説
上部ベイナイトのベイニティックフェライトに含まれる炭素は、炭素過飽和であるにも拘わらずオーステナイト内に存在している。この過飽和オーステナイトは、高い変態温度においてはオーステナイト中の拡散により体積が減少して、(残ったオーステナイトに)炭素が強く濃縮する。剪断説と拡散説ともに上部ベイナイトにおいて炭素が変態界面前方のオーステナイト相に濃縮する点は一致するものの、剪断説で350℃以下で過飽和のベイニティックフェライトプレートが生成(して飽和炭素が炭化物として析出)すると考えることと、350℃以上で炭素が飽和していないベイニティックフェライトプレートが生成すると考えることの間には相当の無理がある。 低い変態温度の場合は、オーステナイト中の炭素の拡散が遅くなるために、この界面近傍で速い拡散が起ってある炭素量Xmに達する(図14)。このベイナイト変態は停止するまで素早く進むとともに、新たな二次的な核生成を可能とする。これらにより、変態温度の低下によってベイナイトラスの幅が小さくなり数が増加することが説明される。炭化物の生成によりオーステナイトに強く濃化した炭素が低減され、炭化物の生成が起こりうるなら、例えば珪素を多く含む鋼のように、ミクロ組織中に多量の残留オーステナイトが存在できるようになる。
※この「変態界面前方の炭素の分配」の解説は、「ベイナイト」の解説の一部です。
「変態界面前方の炭素の分配」を含む「ベイナイト」の記事については、「ベイナイト」の概要を参照ください。
- 変態界面前方の炭素の分配のページへのリンク