回転対称性とは? わかりやすく解説

回転対称

(回転対称性 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/22 10:01 UTC 版)

雪の結晶。6回対称(一部は厳密には3回対称)である。

回転対称(かいてんたいしょう)は、図形を特徴付ける対称性の一群である。

n2以上の整数とし、ある中心(2次元図形の場合)または(3次元図形の場合)の周りを (360 / n) °回転させると自らと重なる性質を、n回対称、またはn相対称、(360 / n) 度対称などという。たとえば、n = 3 の場合、120°回転させると自らと重なる3回対称となる。

なお n < 2(ただし n ≠ 0) のnに対しても形式的にn回対称の定義はできるが、n = 1 の場合、360°回転して自らと重なるのは自明なので、1回対称は対称性とはみなさない。また、n回対称ならば常に−n回対称であるため、負数回対称について論ずるべきことはない。

主な性質

  • 2次元図形について、2回対称と点対称等価である。3次元図形については、2回対称は線対称と等価である。
  • 任意の整数nに対しn回対称であるなら、(360°の整数分の1に限らず)任意の角度回転させても自らと重なる。つまり、円対称と等価である。
  • n回対称ならば、nの任意の約数mについて、同じ中心または軸に対しm回対称でもある。たとえば、6回対称ならば同時に2回対称でも3回対称でも(もちろん1回対称でも)ある。
  • 同じ中心または軸に対し、m回対称でかつn回対称ならば、同じ中心または軸に対しlcm(m, n) 回対称でもある。たとえば、3回対称でかつ4回対称ならば、lcm(3,4) = 12回対称である。

回転反対称

磁場のような正負があるで、 (360 / n) °回転させると自らと正負が逆の場になる性質を、回転反対称という。

n回反対称ならば、(720 / n) °回転させると元の場と一致する、つまり、 n / 2 回対称でもある(は必ずしも正しくない)。ここでn / 2 は整数でなければならないため、nは常に偶数となる。つまり、回転反対称は常に偶数回反対称である。

回転対称図形の例

2次元図形

大分県姫島村章。7回対称

全て回転中心は図形の中心。

3次元図形

全て回転軸は図形の中心を通るものに限って述べる。

  • - 任意の軸についてn回対称(nは2以上の任意の整数、球対称も参照)
  • n角錐 - 頭頂点・底面の中心を通る軸についてn回対称
  • 正多面体 {m, n}(シュレーフリの記号) - 頂点を通る軸についてn回対称、辺心を通る軸について2回対称、面心を通る軸についてm回対称
    • たとえば、立方体 ({4, 3}) - 頂点を通る軸について3回対称、辺心を通る軸について2回対称、面心を通る軸について4回対称

関連項目


回転対称性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/07 09:35 UTC 版)

対称性」の記事における「回転対称性」の解説

ある図形をある回転角回転したときに、もとの図形重な場合、その図形は回転対称性を持っているあらゆる図形1回転(360°)すると元の図形重なるが、これは恒等変換にすぎない。 1/2回転(180°)回転して元の図形重なるものは2回対称であるという。平面では点対称同義である。1/3回転(120°)回転して元の図形重なるものは3回対称であるという。以下同様に、1/n 回転して元の図形重なるものは n 回対称であるという。 一般に回転対称離散的対称である。任意の回転について対称、あるいは微小回転について対称であるものは等方的である。

※この「回転対称性」の解説は、「対称性」の解説の一部です。
「回転対称性」を含む「対称性」の記事については、「対称性」の概要を参照ください。

ウィキペディア小見出し辞書の「回転対称性」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「回転対称性」の関連用語

回転対称性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



回転対称性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの回転対称 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの対称性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS