分子ドッキングとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 分子ドッキングの意味・解説 

ドッキング (分子)

(分子ドッキング から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/08 10:04 UTC 版)

分子モデリングの分野では、ドッキング: Docking)は、安定なタンパク質複合体を形成するために互いに結合したときに、ある分子の第2の分子に対する好ましい配向を予測する方法である[1]。好ましい配向の知識を使用すれば、例えばスコアリング関数を使用して、2つの分子間の会合の強さや結合親和性を予測することができる。

低分子リガンド(緑)をタンパク質ターゲット(黒)にドッキングさせて安定な複合体を生成する模式図
β-2アドレナリン英語版Gタンパク質共役型受容体 (PDB: 3SN6​) の結晶構造への低分子(緑)のドッキング

タンパク質ペプチド核酸炭水化物脂質などの生物学的に関連する分子間の関連付けは、シグナル伝達において中心的な役割を果たしている。さらに、相互作用する2つのパートナーの相対的な配向は、生成されるシグナルの種類(例えば、アゴニストアンタゴニスト)に影響を与える可能性がある。したがって、ドッキングは、生成されるシグナルの強度と種類の両方を予測するのに有用である。

分子ドッキングは、低分子リガンドの適切なターゲット結合部位への結合コンホメーションを予測できるため、構造に基づいた医薬品設計 (structure-based drug design; SBDD) において最も頻繁に使用される手法の一つである。結合挙動の特性評価は、基本的な生化学的プロセスを解明するだけでなく、薬剤の合理的な設計においても重要な役割を果たしている[2][3]

問題の定義

分子ドッキングは、「錠前 (lock)」を開ける「鍵 (key)」の正しい相対的な向き(錠前の表面のどこに鍵穴があるか、鍵を挿入した後に鍵をどの方向に回すかなど)を見つけたいという、「鍵と鍵穴説」(lock-and-key) の問題と考えることができる。ここでは、タンパク質を「錠前」、リガンドを「鍵」と考えることができる。分子ドッキングは最適化問題として定義されることがあり、興味のある特定のタンパク質に結合するリガンドの最も当て嵌りのよい(ベストフィットな)配向を記述することになる。しかし、リガンドとタンパク質の両方が柔軟であるため、「錠前と鍵」よりも「手袋の中の手」(hand-in-glove) の例えがより適切である[4]。ドッキングプロセスの間、リガンドとタンパク質は立体配座を調整して全体的な「ベストフィット」を達成する。この種の配座調整により、全体的な結合が生じることを誘導適合と呼ぶ[5]

分子ドッキング研究では、分子認識プロセスを計算機的にシミュレーションすることに焦点を当てている。それは、タンパク質とリガンドの両方の最適な配座、およびタンパク質とリガンドの相対的な配向を達成し、系全体の自由エネルギーを最小化することを目的としている。

ドッキングアプローチ

分子ドッキングのコミュニティでは、2つの手法が特に人気がある。1つは、タンパク質とリガンドを相補的な表面として記述するマッチング技術を使用している[6][7][8]。2つ目のアプローチは、実際のドッキングプロセスをシミュレーションし、リガンドとタンパク質のペア毎の相互作用エネルギーを計算する[9]。どちらのアプローチにも大きな利点があり、いくつかの制限もある。これらを以下に概説する。

形状の相補性

幾何学的マッチング (geometric matching)/形状相補性法 (shape complementarity methods) は、タンパク質とリガンドをドッキング可能にする特徴の集合として記述する[10]。これらの特徴には、分子表面英語版/相補的表面記述子 (complementary surface descriptors) を含んでもよい。この場合、受容体の分子表面は、その溶媒に接触可能な表面積英語版の観点から説明され、リガンドの分子表面は、その相補的な(一致する)表面記述の観点から記述される。2つの表面間の相補性は、標的分子とリガンド分子をドッキングする相補的な姿勢を見つけるのに役立つ可能性のある形状マッチングの説明になる。別のアプローチは、主鎖原子のターンを使用してタンパク質の疎水性の特徴を記述することである。さらに別のアプローチは、フーリエ形状記述子の技術を使用することである[11][12][13]。形状相補性に基づくアプローチは一般的に高速で堅牢であり、最近の開発によりこれらの方法でリガンドの柔軟性を調べることができるようになったものの、通常はリガンド/タンパク質の配座の動きや動的変化を正確にモデル化することはできない。形状相補性法は数千個のリガンドを数秒でスキャンし、実際にそれらがタンパク質の活性部位に結合できるかどうかを把握することができ、通常はタンパク質とタンパク質の相互作用にまで拡張可能である。それらはまた、最適な結合を見つけるためにリガンドの幾何学的記述を使用するため、ファーマコフォアに基づくアプローチにも適している。

シミュレーション

ドッキングプロセスのシミュレーションははるかに複雑である。このアプローチでは、タンパク質とリガンドは物理的な距離だけ隔てられており、リガンドはそのコンフォメーション空間内で一定数の「移動」を行った後、タンパク質の活性部位にその位置を見つけだす。この移動には、並進や回転などの剛体変換だけでなく、ねじれ角回転などのリガンドの構造への内部変化も含まれている。リガンドの配座空間におけるこれらの移動のそれぞれは、系の総エネルギーコストを誘発する。したがって、系の総エネルギーは、すべての移動の後に計算される。

ドッキングシミュレーションの明らかな利点は、リガンドの柔軟性を簡単に取り入れることができることであるのに対し、形状相補性技術では、リガンドの柔軟性を取り入れるには独創的な方法を用いなければならない。また、形状補完技術がより抽象的であるのに対し、シミュレーションはより正確に現実をモデル化することができる。

明らかに、シミュレーションは計算コストが高く、大規模なエネルギー地形 (energy landscape) を探索しなければならない。グリッドベースの技術、最適化手法、コンピュータの高速化により、ドッキングシミュレーションがより現実的なものになった。

ドッキングの機構

ドッキングフローチャートの概要

ドッキング・スクリーン (docking screen) を実行するために、最初の要件は、関心のあるタンパク質の構造である。通常、構造は、X線結晶構造解析NMR分光法低温電子顕微鏡法(クライオEM)などの生物物理学的手法を用いて決定されているが、ホモロジーモデル英語版構築からも導き出すことができる。このタンパク質構造と潜在的なリガンドのデータベースは、ドッキングプログラムの入力として機能する。ドッキングプログラムが成功するかどうかは、検索アルゴリズムとスコアリング関数の2つの要素に依存する。

検索アルゴリズム

理論的には、探索空間英語版は、リガンドと対になるタンパク質のすべての可能な配向 (orientations) とコンホメーション (conformations) から構成されている。しかし、実際には現在の計算資源では、探索空間を網羅的に探索することは不可能である。これには、各分子のすべての可能な歪み(分子は動的であり、コンホメーション状態のアンサンブルの中に存在している)と、与えられた粒度レベルでのタンパク質に対するリガンドのすべての可能な回転および並進の方向を列挙する必要がある。使用されているほとんどのドッキングプログラムは、リガンド(柔軟性のあるリガンド)のコンホメーション空間全体を考慮しており、いくつかは柔軟性のあるタンパク質受容体をモデル化しようとしている。ペアの各「スナップショット」は、ポーズ (pose) と呼ばれている。

さまざまな立体配座の探索戦略が、リガンドと受容体に適用されてきた。これらには以下が含まれる:

  • 回転可能な結合に関する系統的または確率的ねじれ角探索
  • 分子動力学シミュレーション
  • 遺伝的アルゴリズムは、新しい低エネルギーコンホメーションを「進化」させ、各ポーズのスコアが次の反復のための個体を選択するために使用されるフィットネス関数として機能する。

リガンドの柔軟性

リガンドのコンホメーションは、受容体の不在時に生成され、その後ドッキングされてもよいし[14]、受容体結合空洞 (receptor binding cavity) の存在時にオン・ザ・フライ (on-the-fly) で生成されてもよいし[15]、フラグメントベースのドッキングを使用して、すべての二面体角の完全な回転の柔軟性を持つコンホメーションが生成されてもよい[16]力場エネルギー評価は、エネルギー的に合理的なコンホメーションを選択するために最も頻繁に使用されるが[17]、知識ベースの方法も使用されている[18]

ペプチドは非常に柔軟性が高く、比較的大きな分子であるため、その柔軟性をモデル化することは困難な課題となっている。タンパク質-ペプチドのドッキング時にペプチドの柔軟性を効率的にモデル化するために、多くの手法が開発されてきた[19]

受容体の柔軟性

計算能力は過去10年間[いつ?] で飛躍的に向上し、コンピュータ支援薬物設計におけるより洗練された計算集約的な手法を使用できるようになった。しかし、ドッキング方法論における受容体の柔軟性を扱うことはまだ厄介な問題である[20]。この困難さの背後にある主な理由は、この種の計算で考慮しなければならない多数の自由度である。しかし、それを無視すると、いくつかの場合では、結合ポーズの予測面でドッキング結果が乏しくなる可能性がある[21]

異なるコンホメーションの同じタンパク質について実験的に決定された複数の静的構造は、しばしば、受容体の柔軟性を模倣するために使用される[22]。あるいは、結合空洞を取り囲むアミノ酸側鎖の回転異性体ライブラリを検索して、代替的ではあるがエネルギー的に合理的なタンパク質のコンホメーションを生成してもよい[23][24]

スコアリング関数

ドッキングプログラムは多数の潜在的なリガンドのポーズを生成するが、その中にはタンパク質との衝突のために即座に拒否されるものもある。残りはスコアリング関数を使って評価される。この関数は入力としてポーズを取り、そのポーズが好ましい結合相互作用を表す可能性(likelihood; 尤度; もっともらしさ)を示す数値を返し、あるリガンドを別のリガンドに対して相対的なランク付けを行う。

ほとんどのスコアリング関数は、物理学に基づいた分子力学的な力場であり、結合部位内のポーズのエネルギーを推定する。結合への様々な寄与は、加法方程式として書くことができる:




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  分子ドッキングのページへのリンク

辞書ショートカット

すべての辞書の索引

「分子ドッキング」の関連用語

分子ドッキングのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



分子ドッキングのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのドッキング (分子) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS