エンハンサーとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > エンハンサーの意味・解説 

エンハンサー【enhancer】

読み方:えんはんさー

遺伝子の発現強めるように働くDNAの短い塩基配列RNAへの転写量を調節して促進するはたらきをもつ。


エンハンサ-

芳香、呈味を増強するもの、例チョコレ-トエンハンサ-等。  

エンハンサー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/26 13:50 UTC 版)

遺伝学においてエンハンサー: enhancer)は、特定の遺伝子転写の可能性を高めるためにタンパク質アクチベーター)が結合する、短い(50–1500塩基対DNA領域である[1][2]。多くの場合、これらのエンハンサーに結合するタンパク質は転写因子と呼ばれる。エンハンサーはシスに作用し、遺伝子から最大で100万塩基対も離れている場合もあり、転写開始部位の上流に位置する場合も下流に位置する場合もある[2][3]。エンハンサーは原核生物真核生物の双方に存在し[4]、ヒトのゲノム中には数十万個のエンハンサーが存在する[2]


  1. ^ “Going the distance: a current view of enhancer action”. Science 281 (5373): 60–3. (July 1998). doi:10.1126/science.281.5373.60. PMID 9679020. 
  2. ^ a b c d “Enhancers: five essential questions”. Nature Reviews. Genetics 14 (4): 288–95. (April 2013). doi:10.1038/nrg3458. PMC 4445073. PMID 23503198. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445073/. 
  3. ^ “Transcriptional regulatory elements in the human genome”. Annual Review of Genomics and Human Genetics 7: 29–59. (2006). doi:10.1146/annurev.genom.7.080505.115623. PMID 16719718. 
  4. ^ “Distant activation of transcription: mechanisms of enhancer action”. Molecular and Cellular Biology 32 (24): 4892–7. (December 2012). doi:10.1128/MCB.01127-12. PMC 3510544. PMID 23045397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510544/. 
  5. ^ “Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus”. Science 221 (4611): 663–5. (August 1983). doi:10.1126/science.6306772. PMID 6306772. 
  6. ^ “A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes”. Cell 33 (3): 729–40. (July 1983). doi:10.1016/0092-8674(83)90015-6. PMID 6409418. 
  7. ^ “A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene”. Cell 33 (3): 717–28. (July 1983). doi:10.1016/0092-8674(83)90014-4. PMID 6409417. 
  8. ^ “Transcriptional regulatory elements in the human genome”. Annual Review of Genomics and Human Genetics 7 (1): 29–59. (2006-01-01). doi:10.1146/annurev.genom.7.080505.115623. PMID 16719718. 
  9. ^ “Obesity-associated variants within FTO form long-range functional connections with IRX3”. Nature 507 (7492): 371–5. (March 2014). doi:10.1038/nature13138. PMC 4113484. PMID 24646999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113484/. 
  10. ^ “Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons”. Nucleic Acids Research 38 (4): 1071–85. (March 2010). doi:10.1093/nar/gkp1124. PMC 2831330. PMID 19969543. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831330/. 
  11. ^ “Coding exons function as tissue-specific enhancers of nearby genes”. Genome Research 22 (6): 1059–68. (June 2012). doi:10.1101/gr.133546.111. PMC 3371700. PMID 22442009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371700/. 
  12. ^ “De novo genesis of enhancers in vertebrates”. PLOS Biology 9 (11): e1001188. (November 2011). doi:10.1371/journal.pbio.1001188. PMC 3206014. PMID 22069375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206014/. 
  13. ^ “Interchromosomal associations between alternatively expressed loci”. Nature 435 (7042): 637–45. (June 2005). doi:10.1038/nature03574. PMID 15880101. 
  14. ^ “Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes”. Cell 138 (5): 1019–31. (September 2009). doi:10.1016/j.cell.2009.06.049. PMC 2750862. PMID 19698979. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750862/. 
  15. ^ “Histone modifications at human enhancers reflect global cell-type-specific gene expression”. Nature 459 (7243): 108–12. (May 2009). doi:10.1038/nature07829. PMC 2910248. PMID 19295514. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/. 
  16. ^ “ChIP-seq accurately predicts tissue-specific activity of enhancers”. Nature 457 (7231): 854–8. (February 2009). doi:10.1038/nature07730. PMC 2745234. PMID 19212405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745234/. 
  17. ^ “ChIP-seq accurately predicts tissue-specific activity of enhancers”. Nature 457 (7231): 854–8. (February 2009). doi:10.1038/nature07730. PMC 2745234. PMID 19212405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745234/. 
  18. ^ “Eukaryotic core promoters and the functional basis of transcription initiation”. Nat Rev Mol Cell Biol 19 (10): 621–637. (October 2018). doi:10.1038/s41580-018-0028-8. PMC 6205604. PMID 29946135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205604/. 
  19. ^ “The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1”. Front Cell Dev Biol 8: 592164. (2020). doi:10.3389/fcell.2020.592164. PMC 7554316. PMID 33102493. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554316/. 
  20. ^ “Transcription factors: from enhancer binding to developmental control”. Nat Rev Genet 13 (9): 613–26. (September 2012). doi:10.1038/nrg3207. PMID 22868264. 
  21. ^ a b “Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression”. Nat Neurosci 23 (6): 707–717. (June 2020). doi:10.1038/s41593-020-0634-6. PMC 7558717. PMID 32451484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558717/. 
  22. ^ a b “Long-range enhancer-promoter contacts in gene expression control”. Nat Rev Genet 20 (8): 437–455. (August 2019). doi:10.1038/s41576-019-0128-0. PMID 31086298. 
  23. ^ “YY1 Is a Structural Regulator of Enhancer-Promoter Loops”. Cell 171 (7): 1573–1588.e28. (December 2017). doi:10.1016/j.cell.2017.11.008. PMC 5785279. PMID 29224777. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785279/. 
  24. ^ “The Human Transcription Factors”. Cell 172 (4): 650–665. (February 2018). doi:10.1016/j.cell.2018.01.029. PMID 29425488. 
  25. ^ “Positional specificity of different transcription factor classes within enhancers”. Proc Natl Acad Sci U S A 115 (30): E7222–E7230. (July 2018). doi:10.1073/pnas.1804663115. PMC 6065035. PMID 29987030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065035/. 
  26. ^ “The Mediator complex: a central integrator of transcription”. Nat Rev Mol Cell Biol 16 (3): 155–66. (March 2015). doi:10.1038/nrm3951. PMC 4963239. PMID 25693131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963239/. 
  27. ^ “The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription”. Genes Dev 32 (1): 42–57. (January 2018). doi:10.1101/gad.308619.117. PMC 5828394. PMID 29378788. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828394/. 
  28. ^ “MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300”. EMBO J 22 (2): 281–91. (January 2003). doi:10.1093/emboj/cdg028. PMC 140103. PMID 12514134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140103/. 
  29. ^ “Enhancer RNAs predict enhancer-gene regulatory links and are critical for enhancer function in neuronal systems”. Nucleic Acids Res 48 (17): 9550–9570. (September 2020). doi:10.1093/nar/gkaa671. PMC 7515708. PMID 32810208. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515708/. 
  30. ^ Arnosti, David N.; Kulkarni, Meghana M. (2005-04-01). “Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards?”. Journal of Cellular Biochemistry 94 (5): 890–898. doi:10.1002/jcb.20352. ISSN 0730-2312. PMID 15696541. https://pubmed.ncbi.nlm.nih.gov/15696541. 
  31. ^ “Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements”. Cellular and Molecular Life Sciences 69 (21): 3613–34. (November 2012). doi:10.1007/s00018-012-0990-9. PMC 3474909. PMID 22538991. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474909/. 
  32. ^ “Studying Drosophila embryogenesis with P-lacZ enhancer trap lines”. Roux's Archives of Developmental Biology 201 (4): 194–220. (June 1992). doi:10.1007/BF00188752. PMID 28305845. 
  33. ^ “CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo”. eLife 7. (February 2018). doi:10.7554/eLife.32341. PMC 5826290. PMID 29481322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826290/. 
  34. ^ “Identifying transcriptional cis-regulatory modules in animal genomes”. Wiley Interdisciplinary Reviews: Developmental Biology 4 (2): 59–84. (2014). doi:10.1002/wdev.168. PMC 4339228. PMID 25704908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339228/. 
  35. ^ a b “Enhancer identification through comparative genomics”. Seminars in Cell & Developmental Biology 18 (1): 140–52. (February 2007). doi:10.1016/j.semcdb.2006.12.014. PMC 1855162. PMID 17276707. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855162/. 
  36. ^ Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S.; Sinha, Saurabh (2014-09). “Evidence for deep regulatory similarities in early developmental programs across highly diverged insects”. Genome Biology and Evolution 6 (9): 2301–2320. doi:10.1093/gbe/evu184. ISSN 1759-6653. PMC 4217690. PMID 25173756. https://pubmed.ncbi.nlm.nih.gov/25173756. 
  37. ^ “Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila”. Development 137 (1): 5–13. (January 2010). doi:10.1242/dev.036160. PMC 2796927. PMID 20023155. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796927/. 
  38. ^ “Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements”. Genes & Development 13 (12): 1575–88. (June 1999). doi:10.1101/gad.13.12.1575. PMC 316799. PMID 10385626. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316799/. 
  39. ^ “Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo”. Developmental Biology 349 (2): 350–62. (January 2011). doi:10.1016/j.ydbio.2010.10.036. PMID 21047506. 
  40. ^ “The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo”. Development 129 (14): 3455–68. (July 2002). PMID 12091315. 
  41. ^ “Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer”. Developmental Biology 346 (2): 346–55. (October 2010). doi:10.1016/j.ydbio.2010.07.032. PMC 2945415. PMID 20692247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945415/. 
  42. ^ “Shadow enhancers foster robustness of Drosophila gastrulation”. Current Biology 20 (17): 1562–7. (September 2010). doi:10.1016/j.cub.2010.07.043. PMC 4257487. PMID 20797865. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257487/. 
  43. ^ “Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer”. Science 327 (5963): 302–5. (January 2010). doi:10.1126/science.1182213. PMC 3109066. PMID 20007865. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109066/. 
  44. ^ “Generation of a novel wing colour pattern by the Wingless morphogen”. Nature 464 (7292): 1143–8. (April 2010). doi:10.1038/nature08896. PMID 20376004. 
  45. ^ “Master transcription factors and mediator establish super-enhancers at key cell identity genes”. Cell 153 (2): 307–19. (April 2013). doi:10.1016/j.cell.2013.03.035. PMC 3653129. PMID 23582322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653129/. 
  46. ^ “Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants”. Proceedings of the National Academy of Sciences of the United States of America 110 (44): 17921–6. (October 2013). doi:10.1073/pnas.1317023110. PMC 3816444. PMID 24127591. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816444/. 
  47. ^ “NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis”. Molecular Cell 56 (2): 219–231. (October 2014). doi:10.1016/j.molcel.2014.08.024. PMC 4224636. PMID 25263595. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224636/. 
  48. ^ “Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers”. Genome Research 25 (9): 1281–94. (September 2015). doi:10.1101/gr.188300.114. PMC 4561488. PMID 26113076. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561488/. 
  49. ^ “Late-phase synthesis of IκBα insulates the TLR4-activated canonical NF-κB pathway from noncanonical NF-κB signaling in macrophages”. Science Signaling 9 (457): ra120. (December 2016). doi:10.1126/scisignal.aaf1129. PMC 5260935. PMID 27923915. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260935/. 
  50. ^ “Super-enhancers delineate disease-associated regulatory nodes in T cells”. Nature 520 (7548): 558–62. (April 2015). doi:10.1038/nature14154. PMC 4409450. PMID 25686607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409450/. 
  51. ^ “Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment”. Cytokine & Growth Factor Reviews 26 (4): 389–403. (August 2015). doi:10.1016/j.cytogfr.2015.06.001. PMC 4526340. PMID 26119834. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526340/. 
  52. ^ “Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA”. Oncogene 33 (18): 2395–404. (May 2014). doi:10.1038/onc.2013.179. PMC 3913736. PMID 23686307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913736/. 


「エンハンサー」の続きの解説一覧


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「エンハンサー」の関連用語

エンハンサーのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



エンハンサーのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
JabionJabion
Copyright (C) 2024 NII,NIG,TUS. All Rights Reserved.
イシハライシハラ
Copyright (C) 2024 Ishihara Co.,Ltd. All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのエンハンサー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS