圧電効果 結晶の種類

圧電効果

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/24 15:29 UTC 版)

結晶の種類

空間的に分離された電荷電界電位を発生する。ここではコンデンサーの一般的な誘電体を示している。圧電素子に対して、外部から電圧を印加する代わりに機械的な圧力を加えると、圧電体内の個々の原子で電荷の分離が発生する。

32個の結晶点群のうち、21個は非中心対称(対称の中心を持たない)であり、そのうち20個は、直の圧電効果を示す(21番目は立方晶種432である)。このうちの10個は単位セルに両極を持ち、極性があり(例えば、自発的に分極する)、圧電効果を示す。もしこの双極子に逆に電場をかけたならば、この物質は強誘電体と呼ばれる。

  • 圧電結晶体の種類:1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m
  • 焦電体:1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm

主な圧電体材料

天然・人工ともに多くの材料は、圧電効果を示す。以下に主なものを列挙する。

天然結晶

その他の天然物

  • … 乾燥した骨は、いくらかのピエゾ電気特性を示す。深田栄一による研究は、アパタイト結晶(中心対称であり、非圧電性となる)が要因ではなく、コラーゲンにより圧電特性があることを示した[2]

圧電効果は、生物学上の力センサーの役割りをしていると考えられている[3][4]

人工結晶

人工セラミックス

ペロフスカイト(ペロブスカイトとも呼ばれている。perovskite チタン酸カルシウム:CaTiO3)やタングステン-青銅構造を持つセラミックスの一群は、圧電効果を示す。

鉛フリー圧電セラミックス

近年、RoHS指令によってを含んでいる物質の毒性に関して関心が高まっている。この問題に取り組むため、無鉛の圧電材料が再開発された。

  • ニオブ酸ナトリウムカリウム((K,Na)NbO3) … 2004年に、齋藤康善が率いる豊田中央研究所の研究グループによって、高いを有するPZTに近い特性を備えたニオブ酸ナトリウムカリウムが発見された[5]
  • ビスマスフェライト(BiFeO3)は鉛フリーセラミックスの置き換えの有望な候補である。
  • ニオブ酸ナトリウム(NaNbO3
  • チタン酸ビスマス(Bi4Ti3O12
  • チタン酸ビスマスナトリウム(Na0.5Bi0.5TiO3

現在のところ、これらの物質の環境に対する影響や安定供給も確認されていない。

ポリマー

  • ポリフッ化ビニリデン(1,1-2フッ化エタン重合体、PVDF) … PVDFは、石英より数段高い圧電性を示す。材料の結晶構造が圧電効果を生み出すセラミックスとは違い、ポリマー内では、電界があると相互に曲がりくねった長鎖分子がくっ付いたり、引き離れたりする。

その他の人工物

応用分野

この圧電効果は、正圧電効果の有る物質(応力を加えた時、電気を生ずる)はまた、逆圧電効果(電場が有れば、縮んだり、伸びたりする。この場合電場のかけ方により、一方向のみ、または双方向の場合がある)が有るであろうと可逆的に考えられている。例えば、鉛・ジルコニア・チタン水晶では、元の長さの最大0.1%形状が変わるであろう。この効果は、音、高電圧の発生、電気周波数の発生、マイクロバランスや光学機器の超微調整焦点合わせなど、検出や製造に応用されている。また、原子解像や顕微探査スキャニング(STM, AFM, MTA, SNOMなど)といった多くの科学計測技術の拠りどころともなっている。

その他にも圧電効果による摩擦軽減特性も報告されている[6]。これは結晶配向を正確に制御した酸化亜鉛をコーティングしたもので大気・真空・油中で摩擦を軽減する。特に極性分子が介在しない油中においては圧電効果による反発力で荷重が増加するにつれ摩擦抵抗が低下するという実験結果が出ており、今後は油・真空環境下での応用が期待される。


  1. ^ piezoelectric” (英語). Etymology, origin and meaning of piezoelectric by etymonline. 2022年4月19日閲覧。
  2. ^ "On the Piezoelectric Effect of Bone", Eiichi Fukada and Iwao Yasuda, 1957 The Physical Society of Japan
  3. ^ "Electrical Properties of Bone", Roderic Lakes, University of Wisconsin–Madison
  4. ^ Becker, Robert O; Marino, Andrew A (1982). “Chapter 4: Electrical Properties of Biological Tissue (Piezoelectricity)”. Electromagnetism & Life. Albany, New York: State University of New York Press. ISBN 0-87395-560-9. http://www.ortho.lsuhsc.edu/Faculty/Marino/EL/EL4/Piezo.html 
  5. ^ Saito, Yasuyoshi; Takao, Hisaaki; Tanil, Toshihiko; Nonoyama, Tatsuhiko; Takatoril Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya (2004-11-04). “Lead-free piezoceramics”. Nature (Nature Publishing Group) 432 (7013): 81–87. Bibcode2004Natur.432...84S. doi:10.1038/nature03028. PMID 15516921. http://www.nature.com/nature/journal/v432/n7013/abs/nature03028.html. 
  6. ^ 圧電効果を利用して摩擦力の低減に成功 - 独立行政法人物質・材料研究機構


「圧電効果」の続きの解説一覧




圧電効果と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「圧電効果」の関連用語

圧電効果のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



圧電効果のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの圧電効果 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS