冷水湧出帯 メキシコ湾

冷水湧出帯

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/12 01:02 UTC 版)

メキシコ湾

有人深海調査艇アルビン号。これによって、1983年メキシコ湾で冷水湧出帯が発見された。

メキシコ湾での発見

メキシコ湾化学合成生物群集は、20年以上もの研究の歴史がある。特に、大陸斜面上部には世界で最初に発見された湧出帯があり、おそらく一番研究が行われている場所である。発見当初の動物群は、30年間変わらず存在し続けている[8]

1983年、有人潜水艇アルビン号がメキシコ湾東部を航行中に、生物群が発見された。フロリダ海底崖英語版の底の、温度の低い塩水湧出帯を調査中に、思いがけなくチューブワームや貝類を発見したのである[8]

1984年11月、2つの化学合成生物群集が、メキシコ湾で相次いで発見された。当時テキサスA&M大学が石油湧出の底生生態系に対する影響を調査していた。海底トロール中に、チューブワームや貝類を含む大量の化学合成生物を発見した。それまでは石油湧出は生態系にとって完全にマイナスだと思われていた。同じ頃、アメリカ海洋エネルギー管理・規制・執行局英語版により、メキシコ湾北部大陸斜面の調査が行われた。調査会社が撮影した海底写真には1977年に大西洋で発見されたオトヒメハマグリ科の貝が写っていた。この航海中撮られた写真の中には、メキシコ湾中部で最初のチューブワームの記録があった。これは1986年の潜水艇よって直接確認され、「ブッシュヒル(Bush Hill; 北緯27度47分02秒 西経91度30分31秒 / 北緯27.78389度 西経91.50861度 / 27.78389; -91.50861 (Bush Hill))」と言われるようになった。この場所は徹底的な音響調査がなされ、炭化水素の湧出が確認された。この場所は、チューブワームの密度と、貝類の量の多さ、および炭酸塩岩上の大量のイシサンゴや深海サンゴが特徴的である。ブッシュヒルは、徹底的な調査がされていることでは世界でも有数の化学合成生物群集である[8]

メキシコ湾での分布

2000年現在知られているメキシコ湾北部の冷水湧出帯生物群集。

埋蔵石油や天然ガスと、化学合成生物群集や炭化水素湧出、鉱物沈着などの間に関係があるのは明らかである。しかし石油や天然ガスの貯留層は、メキシコ湾の広い範囲に渡り地下数千メートルの深さにあるのに対し、化学合成生物群集は孤立したエリアで、数メートルの厚さの炭酸岩層の上にあるだけである[8]

メキシコ湾北部斜面の厚さ10キロメートルになる地層には岩塩層が含まれており、岩塩の動きによって影響を受ける。岩塩ドームも参照のこと。メキシコ湾での石油産出の主力は中生代、主にジュラ紀後期から白亜紀後期の層である。輸送管は水面から垂直に約6 - 8キロメートルほどの長さに作られており、これで地中の石油や天然ガスを吸い上げる。一方、天然の海底表面への炭化水素の出現は「湧出」と言われる。地学的な証拠によれば、炭化水素と塩水湧出は数千年も継続することがある。

浮力や圧力などの原因による、石油やガスの地質中での移動は、100万年単位のタイムスケールで行われる。炭化水素が岩盤の裂目を通って湧出する間に地層中で拡散することがあり、その場合湧出帯生物群は広い地域に分布して数百メートルほどになることもある。これは熱水噴出口が局所的であるのとは対照的である[8]

Rovertは、湧出速度が非常に遅い場合から速い場合までの状況を調査した[9]。非常に遅い湧出は、複雑な化学合成生態系を構成することは無い。多くの場合は単にバクテリアや微生物のマットを形成するだけである。大陸斜面上部の、硬い炭酸塩岩の基層は、サンゴイソギンチャクなど、化学合成では無い様々な生物群による可能性がある。もう一方の極である流量が多い場合では、炭化水素の湧出に流動化した堆積物が伴い、海底から流出する。結果として泥火山泥流となる。この2つのタイプの中間に、密度の高く発展した化学合成生態系を存在可能にするものがある。これにはバクテリアマット、チューブワーム、シンカイヒバリガイ、ツキガイ、オトヒメハマグリ、関連生物などが含まれる。これらのエリアはしばしば、ガスハイドレート層の表面かその近くに存在する。それらはまた、堆積岩化した海底にも存在する。その岩石はほとんどは自生の炭酸塩岩だが、時々、重晶石などの珍しい鉱物が含まれる。

2006年現在、メキシコ湾北部で発見された冷水湧出帯周辺の化学合成生物群集。50以上存在する。

メキシコ湾の石油開発のための調査中に、広い範囲の水深で多数の生物群集が発見された。その中にはメキシコ湾で発見されたうちで最も深い水深2,750メートルの場所も含まれる。炭化水素湧出に依存する化学合成生物が報告されたのは、水深290メートルから、2,744メートルの範囲であった。これは、水深305メートル(1,000ft)以下と定義された、メキシコ湾深海と言われる部分にほぼ相当する[8]

化学合成生物群集は大陸棚からは見つかっていないが、化石記録では200メートル以内の浅い海にいたものが見つかっている。この現象の説明としては、捕食圧の変化によるものではないかと考えられている[10]。50以上の生物群集が外縁大陸棚英語版石油開発に関して定義された水域)にあることがわかっている。実際にはさらに存在することと思われる。発見された深度が限られるのは、潜水の限界による所が大きい。1,000メートル以上潜れる潜水艇は不足している。

宇宙からの画像リモートセンシングの技法によって、メキシコ湾北部中央に油膜の存在が示された[11][12]。これはメキシコ湾に天然の石油湧出があることを示す。該当箇所の深度は1,000メートルより深い。この研究は、さらに多くの炭化水素に依存する化学合成生物群集があることを期待させる。

最も密度の高い化学合成生物群集は、水深約500メートルの地点で発見された。これには発見者によって「ブッシュヒル」という名前がつけられている。岩塩ドーム上に、石油とガスの湧出があり、チューブワームやイガイ類が広く濃密に群生している。この湧出帯は、水深約580メートルの海底から40メートルほど隆起している小山の上にある[8]

安定性

化学合成生物群集におけるハイドレートの役割を重要視する説もある。固形ガスハイドレートの生物的な変質は、アメリカ海洋エネルギー管理・規制・執行局の研究 "Stability and Change in Gulf of Mexico Chemosynthetic Communities (PDF) " に詳しい。仮説によれば、ハイドレートの変質は炭化水素放出の速度調節に主要な役割を果たし、また生物群集の安定性に本質的な役割を持っている。ブッシュヒルなどいくつかの地点で、海底水の温度のわずかな変化がハイドレートの分解を促し、ガスの供給を増加させていると考えられている[8]

貝殻の化石生成論と岩石コアの研究によって、全体的に生物群は500 - 1,000年間以上も継続しているとの研究がある。いくつかの箇所が、最適環境を地質学的な期間維持している。500 - 4,000年存続しているものもあるとの報告もある。また、群集の構成種や栄養レベルは、時間を通じてかなりコンスタントであり、個体数のみが変化するらしい。いくつかの場所で、群集のタイプが変化したという事例もあった(たとえばイガイからハマグリへ)。また完全に消滅したものもあった。興味深いことに、破壊的なイベントがあった後でリカバリした場合は、同じ動物群が占めるのである。大崩壊が起こったという証拠は少ないが、ムール貝の生態系で2つの例が見つかっている。時間的に比較的安定である一方、生物群集はそれぞれの地点によって独特であるという[8]

自生鉱物の沈殿や、地質活動によって、湧出パターンは長年の間に変化する。しかし、7つの箇所で直接的な観察を行っているが、化学合成生物群集の生物相やその分布の変化は観察されていない。メキシコ湾で1986年に発見された「ブッシュヒル」では、比較的長い期間(19年)観察が行われている。ここでの19年の観察の間、大きな死滅や、大規模な動物相構成の変化は観察されていない[8]

なお、化学合成生物群集は、どれも十分に海の深い場所に存在するので、ハリケーンの影響を受けることは無いと思われる[8]

生物学

エンコシンカイヒバリガイ[13]Bathymodiolus childressi)は、イガイの仲間で、メキシコ湾の冷水湧出帯の主要な種である。

マクドナルドら (1990) によると、生物群集には一般的に4つのタイプがあるという。チューブワームが支配的なもの。イガイ科が支配的なもの。オトヒメハマグリ科が支配的なもの。また底生のツキガイ科、ハナシガイ科が支配的なもの。バクテリアマットはどの箇所でも存在している。これらの動物相のグループは、それらの集合のいきさつ、集団の大きさ、および化学的環境を表す傾向がある。また、いくつかの点で、それらに依存する従属栄養生物も規定する。メキシコ湾の冷水湧出帯生物群集では多くの種が発見されているが、未記載のものがまだ多く残っている[8]

チューブワーム(ハオリムシなど)の個体は、湧出帯で発見された2つの種では、3メートルにもなるものがあり、また数百年も生きる。チューブワームに目印をつけて観察した結果によると、成長率は様々だが、13個体で測ったところでは最大でも年に9.6センチメートル以下だった。平均では2.19センチメートルであり、カタハオリムシ(Escarpia)の一種と思われる種では2.92センチメートルだった。これらは、熱水噴出口の類似種よりも成長が遅い。しかしハオリムシ類の個体は、熱水噴出口にいる種類の2- 3倍の長さにもなることがある。いくつかの環境で、3メートルにもなるハオリムシの個体が採取されている。これは、おそらく400年生きていることを示している。チューブワームの産卵は季節的では無いが、繁殖は断続的である[8]

チューブワームは雌雄異体である。最近の発見では、雌のハオリムシの産卵は、大型二枚貝である Acesta bullisi(ミノガイ科)とユニークな関係を持っていることがわかった。この貝はチューブワームの先端に位置していて、周期的な産卵の時、卵を食べる。この奇妙な関係は1984年に発見されたが、その意味は十分に解明されてはいない。実際に、成熟したこの貝は、雌のチューブワームの近くにのみ見つかる[8]

冷水湧出帯に棲むメタン栄養性のイガイ類の成長率が報告されている。一般的に成長率は比較的高い。成体のイガイの成長率は、沿岸の似た温度環境のイガイ類と近い。フィッシャー (1995) はまた、幼生のイガイが炭化水素湧出帯では最初は急速に成長するが、成体になると成長率が著しく落ちることを発見した。それらはきわめて早く生殖可能になる。個体も群体も、きわめて長く生存する。これらメタン依存貝は、限定された化学物質要求を持っており、それはメキシコ湾の活発な湧出活動と深い関係を持っている。早い成長率の結果として、何かの被害があった湧出帯は急速に回復する。調査によると、イガイはまた硬い基質も必要としており、適当な基質が増大すれば数が増える。イガイ群生に、常に2つの種が発見されている。1つは巻貝Bathynerita naticoidea で、もう一つは小型エビのオハラエビである。これらの固有種は、非常に高い環境への耐性を持っていると思われる[8]

イガイの群生とは異なり、化学合成的ハマグリ類の群生は、低い死亡率と堆積速度から、新しい個体の加入なしに続くようである。研究されたハマグリ類群生のほとんどは不活動的で、生きている個体がほとんど見つからなかった。パウエル (1995) の報告によると、局所的なコロニーは50年以上の時間で活動し、絶滅と再群生化のスピードは緩やかである。これらの不活性な群集とは対照的に、メキシコ湾中央で最初に発見された群集は活発なハマグリ類から構成されていた[8]

自由生活をするバクテリアによるバクテリアマットもまた、冷水湧出帯の特徴である。これらのバクテリアは、大型生物の動物群と硫化水素やメタンのエネルギーを奪い合うかもしれない。また生産量の相当部分を担っているかもしれない。色素の無い白色のマットは、硫黄酸化細菌の一種ベギアトア(Beggiatoa)の種類であり、オレンジのものはおそらく未同定の非化学合成細菌らしい。

冷水湧出帯の従属栄養生物の種は、湧出帯ごとにそれぞれ独自である。軟体動物、甲殻類など、湧出帯以外の地域でも普通にいる生物が含まれる。近年の研究でわかったことは、湧水域周辺の種は、予想よりもほとんど湧水域の生産を利用しないということである。また逆に、コシオリエビアマオブネガイなどの同位体の研究によれば、それらの食物は湧水域と周辺の生産の混合である。いくつかの場所では、湧水帯の固有種の無脊椎動物は、すべての食物を湧出帯の生産物から得ているわけでは無く、50%もの食物を周辺から得ている[8]


  1. ^ 藤倉克則 2008, p.20
  2. ^ a b c d e f Vanreusel A., De Groote A., Gollner S. & Bright M. (2010). "Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review". PLoS ONE 5(8): e12449. doi:10.1371/journal.pone.0012449.
  3. ^ a b c d e f g h i j Hsing P.-Y. (October 19, 2010). "Gas-powered Circle of Life – Succession in a Deep-sea Ecosystem". NOAA Ocean Explorer | Lophelia II 2010: Oil Seeps and Deep Reefs | October 18 Log. Retrieved 25 January 2011.
  4. ^ a b c Oliver G., Rodrigues C & Cunha M. R. (2011). "Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae". ZooKeys 113: 1-38. doi:10.3897/ZooKeys.113.1402.
  5. ^ a b Boetius A. (2005). "Microfauna–Macrofauna Interaction in the Seafloor: Lessons from the Tubeworm". PLoS Biology 3(3): e102. doi:10.1371/journal.pbio.0030102
  6. ^ Hovland M.; Thomsen E. (1997). “Cold-water corals—are they hydrocarbon seep related?”. Marine Geology 137 (1-2): 159-164. doi:10.1016/S0025-3227(96)00086-2. 
  7. ^ Hovland M. (2008). Deep-water coral reefs: unique biodiversity hot-spots. 8.10 Summary and re-iteration of the hydraulic theory. Springer, 278 pp. ISBN 978-1-4020-8461-4. Pages 204-205.
  8. ^ a b c d e f g h i j k l m n o p q r s Minerals Management Service Gulf of Mexico OCS Region (November 2006). "Gulf of Mexico OCS Oil and Gas Lease Sales: 2007-2012. Western Planning Area Sales 204, 207, 210, 215, and 218. Central Planning Area Sales 205, 206, 208, 213, 216, and 222. Draft Environmental Impact Statement. Volume I: Chapters 1-8 and Appendices". U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans. page 3-27 - 3-31 PDF.
  9. ^ Roberts, H. H. (2001年). “Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses”. GEOPHYSICAL MONOGRAPH SERIES, VOL. 124. American Geophysical Union. pp. 145-161. doi:10.1029/GM124p0145.. 2012年3月26日閲覧。
  10. ^ Callender, W. Russell (1999年). “Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today?”. International Journal of Earth Sciences Volume 88, Number 3,. SpringerLink. pp. 377-391. doi:10.1007/s005310050273. 2012年3月26日閲覧。
  11. ^ Macdonald, W. I. R. (1993年). “Natural Oil Slicks in the Gulf of Mexico Visible From Space”. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. C9. American Geophysical Union. pp. 16,351-16,364. doi:10.1029/93JC01289. 2012年3月26日閲覧。
  12. ^ MacDonald, I.R.; J.F. Reilly Jr., W.E. Best, R. Vnkataramaiah, R. Sassen, N.S. Guinasso Jr., and J. Amos. (1996). Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern. Amer Assn of Petroleum Geologists. pp. 27-37. ISBN 978-0891813453 
  13. ^ 藤倉克則 2008, p.84
  14. ^ a b c d e Olu K., Cordes E. E., Fisher C. R., Brooks J. M., Sibuet M. & Desbruyères D. (2010). "Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas". PLoS ONE 5(8): e11967. doi:10.1371/journal.pone.0011967.
  15. ^ Pinheiro L. M.; Ivanov M. K., Sautkin A., Akhamanov G., Magalhães V. H., Volkonskaya A., Monteiro J. H., Somoza L., Gardner J., Hamouni N. & Cunha M. R. (2003). “Mud volcanoes in the Gulf of Cadiz: results from the TTR-10 cruise”. Marine Geology 195: 131-151. doi:10.1016/S0025-3227(02)00685-0. 
  16. ^ a b c d e Miloslavich P.; Klein E., Díaz J. M., Hernández C. E., Bigatti G. et al. (2011). “Marine Biodiversity in the Atlantic and Pacific Coasts of South America: Knowledge and Gaps”. PLoS ONE 6 (1): e14631. doi:10.1371/journal.pone.0014631. 
  17. ^ a b c d Danovaro R., Company J. B., Corinaldesi C., D'Onghia G., Galil B. et al. (2010). "Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable". PLoS ONE 5(8): e11832. doi:10.1371/journal.pone.0011832.
  18. ^ Southward E.; Andersen A., Hourdez S. (submitted 2010). “Lamellibrachia anaximandri n.sp., a new vestimentiferan tubeworm from the Mediterranean (Annelida)”. Zoosystema. 
  19. ^ Zitter T. A. C; Henry P., Aloisi G., Delaygue G., Çagatay M. N. et al. (2008). “Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey)”. Deep Sea Research Part I: Oceanographic Research Papers 55 (4): 552-570. doi:10.1016/j.dsr.2008.01.002. 
  20. ^ Chen Z.; Huang C.-Y., Zhao M., Yan W., Chien C.-W., Chen M., Yang H., Machiyama H. & Lin S. (2011). “Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea”. Journal of Asian Earth Sciences 40 (1): 363-370. doi:10.1016/j.jseaes.2010.06.006. 
  21. ^ 藤倉克則 2008, p.450
  22. ^ 藤倉克則 2008, p.59
  23. ^ a b Fujikura K., Lindsay D., Kitazato H., Nishida S. & Shirayama Y. (2010). "Marine Biodiversity in Japanese Waters". PLoS ONE 5(8): e11836. doi:10.1371/journal.pone.0011836.
  24. ^ 三宅 裕志 (2010年). “ハオリムシの棲管内行動の観察法 (PDF)”. JAMSTEC深海研究. (16-I.生物学編). 海洋科学技術センター. 2012年3月29日閲覧。
  25. ^ マリアナ海溝、チャレンジャー海淵の近くにおいて、マントル物質から栄養を摂る生態系を発見~有人潜水調査船「しんかい6500」による成果~” (2012年2月7日). 2012年3月29日閲覧。
  26. ^ Ohara, Yasuhiko (2012年2月21日). “A serpentinite-hosted ecosystem in the Southern Mariana Forearc”. PNAS February 21, 2012 vol. 109 no. 8 2831-2835. Proceedings of the National Academy of Sciences of the United States of America. pp. 2831-2835. doi:10.1073/pnas.1112005109. 2012年3月29日閲覧。
  27. ^ 東北地方太平洋沖地震震源海域での有人潜水調査船「しんかい6500」による潜航調査で得られた画像について(速報)”. 海洋研究開発機構 (2011年8月15日). 2012年3月29日閲覧。
  28. ^ Kawagucci, Shinsuke (2012年1月3日). “Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake”. Scientific Reports 2,Article number:270. Scientific Reports. doi:10.1038/srep00270. 2012年3月26日閲覧。
  29. ^ a b c Gordon D. P., Beaumont J., MacDiarmid A., Robertson D. A. & Ahyong S. T (2010). "Marine Biodiversity of Aotearoa New Zealand". PLoS ONE 5(8): e10905. doi:10.1371/journal.pone.0010905.
  30. ^ Lewis K. B.; Marshall B. A. (1996). “Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins” (PDF). New Zealand Journal of Geology and Geophysics 39 (2): 181-200. doi:10.1080/00288306.1996.9514704. JOI:. http://www.informaworld.com/smpp/ftinterface~content=a920227278~fulltext=713240930~frm=content. 
  31. ^ Orpin A. R. (1997). “Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand”. Marine Geology 138 (1-2): 51-67. doi:10.1016/S0025-3227(96)00101-6. 
  32. ^ a b c Baco A. R.; Rowden A. A., Levin L. A., Smith C. R., Bowden D. et al. (2009). “Initial characterization of cold seep faunal communities on the New Zealand margin”. Marine Geology 272 (1-4): 251-259. doi:10.1016/j.margeo.2009.06.015. 
  33. ^ Sellanes J.; Neira C., Quiroga E. & Teixido N. (2010). “Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats”. Marine Ecology 31 (1): 111-124. doi:10.1111/j.1439-0485.2009.00332.x. 
  34. ^ a b Sellanes J.; Quiroga E. & Neira C. (2008). “Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ~36°S”. ICES Journal of Marine Science 65 (7): 1102-1111. doi:10.1093/icesjms/fsn099. 
  35. ^ Sellanes J.; Quiroga E., Gallardo V. A. (2004). “First direct evidence of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile”. Journal of the Marine Biological Association of the UK 84 (5): 1065-1066. doi:10.1017/S0025315404010422h. 
  36. ^ a b c Gallardo V. A. & Espinoza C. (2007). "Large multicellular filamentous bacteria under the oxygen minimum zone of the eastern South Pacific: a forgotten biosphere". In: Hoover R. B., Levin G. V., Rozanov A. Y. & Davies P. C. W. (eds). San Diego, CA, USA: Proc. SPIE 6694: 66941H–11. doi:10.1117/12.782209.
  37. ^ a b Barrie J. V., Cook S. & Conway K. W. (available online 4 March 2010). "Cold seeps and benthic habitat on the Pacific margin of Canada". Continental Shelf Research 31(2) Supplement 1: S85-S92. doi:10.1016/j.csr.2010.02.013.
  38. ^ Lorenson T. D., Kvenvolden K. A., Hostettler F. D., Rosenbauer R. J., Martin J. B. & Orange D. L. (1999). "Hydrocarbons Associated with Fluid Venting Process in Monterey Bay, California". USGS Pacific Coastal & Marine Science Center.
  39. ^ Goffredi S. K. & Barry J. P. (2000). "Factors regulating productivity in chemoautotrophic symbioses; with emphasis on Calyptogena kilmeri and Calyptogena pacifica". Poster, Monterey Bay Aquarium Research Institute. accessed 3 February 2011. PDF.
  40. ^ Bernhard J. M.; Buck K. R. & Barry J. P. (2001). “Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera”. Deep Sea Research Part I: Oceanographic Research Papers 48 (10): 2233-2249. doi:10.1016/S0967-0637(01)00017-6. 
  41. ^ a b c Griffiths H. J. (2010). “Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?”. PLoS ONE 5 (8): e11683. doi:10.1371/journal.pone.0011683. 
  42. ^ Kaim A.; Jenkins R. & Warén A. (2008). “Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea)”. Zoological Journal of the Linnean Society 154 (3): 421-436. doi:10.1111/j.1096-3642.2008.00431.x. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「冷水湧出帯」の関連用語

冷水湧出帯のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



冷水湧出帯のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの冷水湧出帯 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS