二項係数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/13 01:12 UTC 版)



数学における二項係数(にこうけいすう、英: binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は2つの非負整数で添字付けられ、添字 n, k を持つ二項係数はふつう (n パスカルの法則は重要な漸化式
等式 (10) も組合せ論的に証明できる。(n − k ディクソンの等式は
k) とか (n¦k) と書かれる(これは二項冪 (1 + x)n の展開における xk の項の係数である。適当な仮定の下で、この係数の値は
k) は、2次元格子上で (0, 0) から (k, n − k) まで、(0, 1) または (1, 1) 刻みで移動して辿った経路の総数を表す。そのことは全部で n − k 個の点を亙るために必ずちょうど k 回だけ (1, 1) 刻みの移動をしなければならないのだから明らかである。さてここでちょうど k 個ある (1, 1) 刻みを (0, 2) 刻みで置き換えると、(0, 1) 刻みと (0, 2) 刻みを合わせて (0, n) へ到達することになる。これを 0 ≤ k ≤ ⌊n / 2⌋ なる各 k に亙って考えれば、(0, 0) から (0, 1) 刻みと (0, 2) 刻みを合わせて (0, n) へ到達する方法の総数が数え上げられる。そのような方法の総数が F(n + 1) 通りあることは明らかである。
ディクソンの等式
- 二項係数のページへのリンク