二項係数とは? わかりやすく解説

556の専門辞書や国語辞典百科事典から一度に検索! Weblio 辞書 ヘルプ
Weblio 辞書 > 辞書・百科事典 > 百科事典 > 二項係数の意味・解説 

二項係数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/13 01:12 UTC 版)

二項係数の全体をパスカルの三角形の形に並べることができる。
4つの数から2つの数を選ぶ方法は
四次までの二項展開の視覚的説明

数学における二項係数(にこうけいすう、: binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は2つの非負整数で添字付けられ、添字 n, k を持つ二項係数はふつう (n
k
)
とか (n¦k) と書かれる(これは二項 (1 + x)n展開における xk の項の係数である。適当な仮定の下で、この係数の値は

パスカルの三角形の第1000 行に並ぶ二項係数を縦に並べたもの。各二項係数を十進表示し、その各桁の数字を0-9に応じたグレイスケールの点で表してある。画像の左の境界は二項係数の対数グラフにほぼ対応しており、これらが対数凹列英語版であることが見て取れる。

パスカルの法則英語版は重要な漸化式

2次元格子上の経路の例

等式 (10) も組合せ論的に証明できる。(nk
k
)
は、2次元格子上で (0, 0) から (k, nk) まで、(0, 1) または (1, 1) 刻みで移動して辿った経路の総数を表す。そのことは全部で nk 個の点を亙るために必ずちょうど k 回だけ (1, 1) 刻みの移動をしなければならないのだから明らかである。さてここでちょうど k 個ある (1, 1) 刻みを (0, 2) 刻みで置き換えると、(0, 1) 刻みと (0, 2) 刻みを合わせて (0, n) へ到達することになる。これを 0 ≤ k ≤ ⌊n / 2⌋ なる各 k に亙って考えれば、(0, 0) から (0, 1) 刻みと (0, 2) 刻みを合わせて (0, n) へ到達する方法の総数が数え上げられる。そのような方法の総数が F(n + 1) 通りあることは明らかである。

ディクソンの等式

ディクソンの等式英語版




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「二項係数」の関連用語

二項係数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



二項係数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの二項係数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS