3C様プロテアーゼとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 3C様プロテアーゼの意味・解説 

3C様プロテアーゼ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/07 20:31 UTC 版)

3C様プロテアーゼ(3シーようプロテアーゼ、: 3C-like protease3CLpro)またはMproは、正式にはC30エンドペプチダーゼとして知られており、コロナウイルスに見られる主要なプロテアーゼである。コロナウイルスのポリタンパク質英語版を11個の保存部位で切断する。システインプロテアーゼであり、プロテアーゼのPAクラン英語版のメンバーである。活性部位にシステイン-ヒスチジン触媒二残基を持ち、Gln-(Ser/Ala/Gly) ペプチド結合を切断する。


  1. ^ Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M, Jonsson CB, Roush WR, McKerrow J, Craik CS (July 2007). “Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus”. Biochemistry 46 (30): 8744–52. doi:10.1021/bi0621415. PMID 17605471. 
  2. ^ a b Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J, Lai L (January 2004). “Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase”. The Journal of Biological Chemistry 279 (3): 1637–42. doi:10.1074/jbc.m310875200. PMC 7980035. PMID 14561748. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980035/. 
  3. ^ Akaji K, Konno H, Onozuka M, Makino A, Saito H, Nosaka K (November 2008). “Evaluation of peptide-aldehyde inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant”. Bioorganic & Medicinal Chemistry 16 (21): 9400–8. doi:10.1016/j.bmc.2008.09.057. PMC 7126698. PMID 18845442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126698/. 
  4. ^ Fehr AR, Perlman S (2015). “Coronaviruses: an overview of their replication and pathogenesis”. Coronaviruses. Methods in Molecular Biology. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. "See section: Virion Structure." 
  5. ^ Ryu, Young Bae; Park, Su-Jin; Kim, Young Min; Lee, Ju-Yeon; Seo, Woo Duck; Chang, Jong Sun; Park, Ki Hun; Rho, Mun-Chual et al. (2010-03-15). “SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii” (英語). Bioorganic & Medicinal Chemistry Letters 20 (6): 1873–1876. doi:10.1016/j.bmcl.2010.01.152. ISSN 0960-894X. PMC 7127101. PMID 20167482. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127101/. 
  6. ^ Ocain TD, Rich DH (February 1992). “alpha-Keto amide inhibitors of aminopeptidases”. Journal of Medicinal Chemistry 35 (3): 451–6. doi:10.1021/jm00081a005. PMID 1738140. 
  7. ^ Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (June 2003). “Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs”. Science 300 (5626): 1763–7. Bibcode2003Sci...300.1763A. doi:10.1126/science.1085658. PMID 12746549. 
  8. ^ Pacifico S, Ferretti V, Albanese V, Fantinati A, Gallerani E, Nicoli F, Gavioli R, Zamberlan F, Preti D, Marastoni M (July 2019). “Synthesis and Biological Activity of Peptide α-Ketoamide Derivatives as Proteasome Inhibitors”. ACS Medicinal Chemistry Letters 10 (7): 1086–1092. doi:10.1021/acsmedchemlett.9b00233. PMC 6627721. PMID 31312413. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627721/. 
  9. ^ Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R (October 2015). “A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex”. Virology 484: 313–22. doi:10.1016/j.virol.2015.06.016. PMC 4567502. PMID 26149721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567502/. 
  10. ^ Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, de Wilde A, Snijder EJ, Liu H, Hilgenfeld R (February 2020). “α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment”. Journal of Medicinal Chemistry 63 (9): 4562–4578. doi:10.1021/acs.jmedchem.9b01828. PMC 7098070. PMID 32045235. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098070/. 
  11. ^ Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (March 2020). “Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors”. Science 368 (6489): 409–412. Bibcode2020Sci...368..409Z. doi:10.1126/science.abb3405. PMC 7164518. PMID 32198291. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164518/. 
  12. ^ Morse JS, Lalonde T, Xu S, Liu WR (March 2020). “Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV”. ChemBioChem 21 (5): 730–738. doi:10.1002/cbic.202000047. PMC 7162020. PMID 32022370. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162020/. 
  13. ^ Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D (March 2020). “Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases”. ACS Central Science 6 (3): 315–331. doi:10.1021/acscentsci.0c00272. PMC 7094090. PMID 32226821. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094090/. 
  14. ^ Ramajayam R, Tan KP, Liang PH (October 2011). “Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery”. Biochemical Society Transactions 39 (5): 1371–5. doi:10.1042/BST0391371. PMID 21936817. 
  15. ^ Dai, Wenhao; Zhang, Bing; Jiang, Xia-Ming; Su, Haixia; Li, Jian; Zhao, Yao; Xie, Xiong; Jin, Zhenming et al. (2020-06-19). “Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease” (英語). Science 368 (6497): 1331–1335. doi:10.1126/science.abb4489. ISSN 0036-8075. PMC 7179937. PMID 32321856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179937/. 
  16. ^ Pfizer (2021-06-23). A PHASE 1B, 2-PART, DOUBLE-BLIND, PLACEBO-CONTROLLED, SPONSOR-OPEN STUDY, TO EVALUATE THE SAFETY, TOLERABILITY AND PHARMACOKINETICS OF SINGLE ASCENDING (24-HOUR, PART 1) AND MULTIPLE ASCENDING (120-HOUR, PART 2) INTRAVENOUS INFUSIONS OF PF-07304814 IN HOSPITALIZED PARTICIPANTS WITH COVID-19. https://clinicaltrials.gov/ct2/show/NCT04535167. 
  17. ^ Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S (May 2020). “Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors”. Journal of Biomolecular Structure and Dynamics: 1–10. doi:10.1080/07391102.2020.1766572. PMC 7256349. PMID 32397940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256349/. 
  18. ^ a b Bhardwaj VK, Singh R, Das P, Purohit R (January 2021). “Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs”. Computers in Biology and Medicine 128 (1104117): 104117. doi:10.1016/j.compbiomed.2020.104117. PMC 7659809. PMID 33217661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659809/. 
  19. ^ Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO (November 2012). “Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses”. Journal of Virology 86 (21): 11754–62. doi:10.1128/JVI.01348-12. PMC 3486288. PMID 22915796. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486288/. 
  20. ^ Ziebuhr J, Bayer S, Cowley JA, Gorbalenya AE (January 2003). “The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs”. Journal of Virology 77 (2): 1415–26. doi:10.1128/jvi.77.2.1415-1426.2003. PMC 140795. PMID 12502857. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140795/. 


「3C様プロテアーゼ」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  3C様プロテアーゼのページへのリンク

辞書ショートカット

すべての辞書の索引

「3C様プロテアーゼ」の関連用語

3C様プロテアーゼのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



3C様プロテアーゼのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの3C様プロテアーゼ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS